

## IPC-8497-1

# Cleaning Methods and Contamination Assessment for Optical Assembly

Developed by the Photonic Component/Fiber Handling Task Group (5-25a) of the Optoelectronics Assembly Subcommittee (5-25) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

### Contact:

IPC 3000 Lakeside Drive, Suite 309S Bannockburn, Illinois 60015-1219 Tel 847 615.7100 Fax 847 615.7105

# **Table of Contents**

| 1 8        | SCOPE                                                           | 1   | 7.3.3  | Cleaning Fluids/Wet Wipes                               | 13 |
|------------|-----------------------------------------------------------------|-----|--------|---------------------------------------------------------|----|
| 1.1        | Intent                                                          | 1   | 7.3.4  | Dry Swabs                                               | 14 |
| 1.2        | Caution Reminders                                               | 1   | 7.3.5  | Sticking Tapes/Adhesive Tapes                           | 14 |
| 1.2.1      | Safety Cautions                                                 | 1   | 7.3.6  | Cleaning Fluids and Wet Swabs                           | 15 |
| 1.2.2      | Electrostatic Discharge (ESD) Caution                           | 1   | 7.3.7  | Machines                                                | 15 |
| 2 <i>A</i> | APPLICABLE DOCUMENTS                                            | 1   | 7.3.8  | Notes About Cleaning Fluids                             | 15 |
| 2.1        | IPC-Association Connecting                                      | 1   | 7.4    | Method Evaluation and Qualification                     | 15 |
|            | Electronics Industry                                            | 1   | 8 E    | ND-CAPS                                                 | 16 |
| 2.2        | IEC-International Electrotechnical                              |     | 8.1    | History - Material                                      |    |
|            | Commission                                                      | . 1 | 8.2    | History - Design/Shape                                  |    |
| 2.3        | TIA-Telecommunications Industry Association                     | 1   | 8.3    | Material Properties                                     |    |
|            |                                                                 |     | 8.4    | Unacceptable Materials                                  |    |
| 3 T        | TERMS AND DEFINITIONS                                           | 1   | 8.5    | Manufacturing Process of End-Caps                       |    |
| 4 (        | CLEANING SPECIFICATION                                          | 2   | 8.5.1  | Molding                                                 |    |
| 4.1        | General Information                                             | 2   | 8.5.2  | Cleaning                                                | 19 |
| 4.1.1      | Cleaning Process Flow                                           | 4   | 8.5.3  | Packaging                                               | 19 |
| 4.1.2      | Inspection Criteria Matrix                                      | 4   | 8.6    | End-cap Design                                          | 19 |
| 4.1.3      | Understanding MT-Ferrule Connectors                             | 5   | 8.6.1  | Form                                                    | 19 |
| 4.1.4      | Understanding Composite Bi-Metallic-                            |     | 8.6.2  | Fit                                                     | 19 |
|            | Ferruled Connectors                                             | 5   | 8.6.3  | Function                                                | 19 |
| 4.1.5      | Inspection Criteria for Receptacles (with Internal Fiber Stubs) | 5   | 8.7    | Recommendation                                          | 19 |
| 4.1.6      | Illustrations of Receptacle Devices (with                       |     | 9 P    | ERFORMANCE TESTING                                      | 19 |
|            | Internal Fiber Stubs)                                           | 5   | 9.1    | Method Evaluation and Qualification                     |    |
| 4.1.7      | Inspection Criteria for Receptacles (with Lenses)               | 5   |        | for Cleaning Solutions                                  |    |
|            |                                                                 |     | 9.1.1  | Contamination of the Microscope                         |    |
| 5 C        | CONTAMINATION                                                   | 7   | 9.1.2  | Devices Under Test                                      |    |
| 6 II       | NSPECTION EQUIPMENT                                             | 8   | 9.1.3  | Patch Cords                                             |    |
| 6.1        | Overview                                                        | 8   | 9.1.4  | Bulkhead Adapters                                       |    |
| 6.2        | Equipment                                                       | 8   | 9.1.5  | Intended Device                                         |    |
| 6.2.1      | Optical Microscope                                              | 8   | 9.1.6  | Contamination Technique                                 |    |
| 6.2.2      | Video Microscope                                                | 8   | 9.1.7  | Patch Cords                                             |    |
| 6.2.3      | Automated End-Face Inspection System                            | 9   | 9.1.8  | In Situ End-Faces                                       |    |
| 6.2.4      | Interferometer                                                  | 9   | 9.1.9  | Lens Elements                                           |    |
| 6.3        | Performance Issues                                              | 9   | 9.1.10 | Alignment Sleeve and Other Surfaces                     | 21 |
| 6.4        | Inspection Application                                          | 10  | 9.1.11 | Procedure and Data Collection                           | 21 |
| 6.5        | Inspection Templates                                            | 11  | 9.1.12 | Post Test Degradation Testing                           | 22 |
| 7 (        | CLEANING METHODS                                                | 11  | 9.1.13 | Data Analysis                                           | 23 |
| 7.1        | Procedures for Use                                              |     | 9.1.14 | Qualification/Disqualification                          | 23 |
| 7.2        | Description of Items to be Cleaned                              |     | 10 I   | ELECTROSTATIC CHARGE EFFECT (ESC)                       |    |
| 7.2        | Description of Common Cleaning Methods                          |     |        | AND CONNECTOR CLEANLINESS                               | 23 |
| 7.3.1      | Compressed Gas                                                  |     | 10.1   | Electrostatic Charge Effect (ESC) During                |    |
| 7.3.1      | Dry wipes and Cleaning Cassettes                                |     |        | the Cleaning Process of Fiber Optics<br>Connectors [14] | 22 |
| 1.5.4      | Dry wipes and Cleaning Cassettes                                | 13  |        | Connectors [14]                                         | 23 |

| 10.2                                                                                                                                                                  | Electrostatic Charge Accumulation Test                                                                                                                                               | 23     | Figure 4-8  | More Receptacle Devices: 1.) Middle - Xenpak                                                                                                                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 10.2.1                                                                                                                                                                | Equipment                                                                                                                                                                            | 23     |             | which use SC ports; 2.) Left - SFF which can use a variety of optical ports (LC shown); and                                                                        |  |
| 10.2.2                                                                                                                                                                | 0.2.2 Sample Preparation                                                                                                                                                             |        |             | 3.) Right - POD which can use a variety of                                                                                                                         |  |
| 10.2.3                                                                                                                                                                | Apparatus Setup                                                                                                                                                                      | 24     |             | optical ports (MTP shown). (Note that it cannot be determined if these devices use fiber stubs                                                                     |  |
| 10.2.4                                                                                                                                                                | 0.2.4 Experimental Procedure                                                                                                                                                         |        |             | or lenses until the ports are inspected with a fiberscope.)                                                                                                        |  |
| C                                                                                                                                                                     | HE INFLUENCE OF SCRATCHES/ CONTAMINATION ON OPTICAL SIGNAL PERFORMANCE                                                                                                               | 26     | Figure 5-1  | EDX Spectrum of a Contaminated Connector<br>Showing "Human" Contamination                                                                                          |  |
| 11.1                                                                                                                                                                  | Scratches                                                                                                                                                                            |        | Figure 5-2  | Contaminated and Damaged Connector End-Face [1]                                                                                                                    |  |
| 11.2                                                                                                                                                                  | Particle Contamination                                                                                                                                                               | 26     | Figure 6-1  | Optical Microscope 8                                                                                                                                               |  |
| 11.3                                                                                                                                                                  | Oil Contamination                                                                                                                                                                    | 28     | Figure 6-2  | Video Microscope                                                                                                                                                   |  |
| 11.4                                                                                                                                                                  | Detailed Descriptions of Optical                                                                                                                                                     |        | Figure 6-3  | Automated Inspection System                                                                                                                                        |  |
| 11.4.1                                                                                                                                                                | Equipment Indices                                                                                                                                                                    |        | Figure 6-4  | Hand Held Optical Microscope Utilized on Typical In-Hand Connectors                                                                                                |  |
| 11.4.2                                                                                                                                                                | Detection                                                                                                                                                                            |        | Figure 6-5  | Hand Held Video Scope/Adaptors 10                                                                                                                                  |  |
| 11.4.3                                                                                                                                                                | Field of View                                                                                                                                                                        |        | Figure 6-6  | Bench Top System 10                                                                                                                                                |  |
| 11.4.4                                                                                                                                                                | Illumination                                                                                                                                                                         |        | Figure 6-7  | Probe Unit10                                                                                                                                                       |  |
| 11.4.5                                                                                                                                                                | Magnification                                                                                                                                                                        |        | Figure 6-8  | Typical Inspection Template11                                                                                                                                      |  |
| 11.4.6                                                                                                                                                                | Numerical Aperture                                                                                                                                                                   |        | Figure 7-1  | Typical Canned Air Dispenser 12                                                                                                                                    |  |
|                                                                                                                                                                       | Rules                                                                                                                                                                                |        | Figure 7-2  | Typical Lint Free Wipes (Paper), Cleaning Cassette (Cloth) and Card Cleaner (Cloth) and In-Situ Cassette (Cloth)                                                   |  |
| 12 F                                                                                                                                                                  | REFERENCE DOCUMENTS                                                                                                                                                                  | 31     | Figure 7-3  | Comparison of Particulate Contamination in Washed and Unwashed Cleaning Cloth [18] 14                                                                              |  |
|                                                                                                                                                                       | Figures                                                                                                                                                                              |        | Figure 7-4  | Typical FO Connector Cleaning Swabs 14                                                                                                                             |  |
| Figure 4                                                                                                                                                              | 4-1 Connector End-Face Inspection Flow                                                                                                                                               | 3      | Figure 8-1  | (a) Close-up of the PVC End-cap for                                                                                                                                |  |
| Figure 4                                                                                                                                                              | •                                                                                                                                                                                    |        |             | ST Connector. (b) EDX Spectrum of the Contamination from the End-face of the ST Connector Showing the Presence of Aluminium                                        |  |
| Figure 4                                                                                                                                                              | 4-3 Typical connectors using zones for inspection                                                                                                                                    | ı 5    | Figure 8-2  | (a) Fiberscope image of Contaminated                                                                                                                               |  |
| Figure 4                                                                                                                                                              | 4-4 Multimode MT-Ferrule End-Face (top).<br>Typical MT-Ferruled Connector: 12-Fiber MP0<br>MTP Connector (bottom)                                                                    |        |             | Connector with Organic Film. (b) FTIR Spectra of the Organic Film-Polydimethylsiloxane (PDMS)                                                                      |  |
| Figure 4                                                                                                                                                              |                                                                                                                                                                                      |        | Figure 8-3  | X-ray images of end-cap for ST connectors: (a) Standard size ferrule-type, (b) Short ferrule-type, (c) newly designed, non-contact end-cap                         |  |
| Figure 4                                                                                                                                                              | E2000 Bulkhead Adaptor (bottom-right)  4-6 Ideal SMF Receptacle Device with Internal fiber stub measured with a probe at 200X set (Note that the core is not illuminated. Therefore) | tting. | Figure 8-4  | (a) Close-up of the connector ferrule with the blue, short end-cap. (b) Arrows indicating metallic and organic contamination inside of white, ferrule-type end-cap |  |
| Figure                                                                                                                                                                | cannot be determined if it is  SMF or MMF.)                                                                                                                                          | 6      | Figure 10-1 | ST type connector and the sample obtained by cutting and separating the fiber from rest of the cable                                                               |  |
| Figure 4-7 Receptacle Devices (from Left to Right):  1.) GBIC which use SC ports; 2.) SFP which use LC ports; and 3.) XFP which use LC ports. (Note that it cannot be |                                                                                                                                                                                      |        | Figure 10-2 | SC type connector and the exposed fiber sample obtained by stripping the blue plastic covering.                                                                    |  |
|                                                                                                                                                                       | determined if these devices use fiber stubs or lenses until the ports are                                                                                                            |        | Figure 10-4 | Experimental Flowchart of ESD Experiment 24                                                                                                                        |  |
|                                                                                                                                                                       | inspected with a fiberscope.)                                                                                                                                                        | 6      | Figure 10-3 | Apparatus Setup Example24                                                                                                                                          |  |

IPC-8497-1 December 2005

| Figure 10-5 | ESC calculated, generated by Cleaning System 1[14], cleaning process with Cleaning System 1 in front of air ionizer, Cleaning System 1 with air ionizer and additional exposure of the connector endface to ionized air (10S), Cleaning System 2 cleaning, Cleaning System 2 cleaning, Cleaning System 2 cleaning, Cleaning System 2 cleaning in | Figure 11-6                                       | Typical amount of particles on Ferrule.  IL-1550 nm/1310 nm (clean connector) = 0.19/0.2 dB; IL-1550 nm/1310 nm (contaminated connector) = 0.21/0.21 dB. RL-1550 nm/1310 nm (clean connector) = 55.7/54.5 dB; RL-1550 nm/1310 nm (contaminated connector) = 55.6/54.5 dB |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 10-6 | front of air ionizer                                                                                                                                                                                                                                                                                                                             | Figure 11-7                                       | connector, contaminated with finger prints after mating with clean reference connector (a), fiberscopic image of the reference fiber after mating with oil contaminated fiber (b). IL (clean connector) - 1550 nm/1310 nm = 0.22 dB/0.27                                 |
| Figure 11-1 | This graph compares RL of the connectors from the two scratch experiment groups (wavelength is 1550 nm)                                                                                                                                                                                                                                          |                                                   | dB, RL (clean connector) - 1550/1310 nm = 58.1 dB /56.9 dB, IL (contaminated connector) - 1550 nm/1310 nm = 0.23 dB/0.27 dB, RL (contaminated connector) - 1550 nm/                                                                                                      |
| Figure 11-2 | Loose Carbon Particles Transferring Pattern (Through SC-SC Adapter Connection)                                                                                                                                                                                                                                                                   |                                                   | 1310 nm = 41.2/39.8 dB                                                                                                                                                                                                                                                   |
| Figure 11-3 | ,                                                                                                                                                                                                                                                                                                                                                | Figure 11-8                                       | Field of View Examples 30                                                                                                                                                                                                                                                |
| rigule 11-3 | A particle blocked approximately 20-40% of the fiber core. IL-1550 nm/1310 nm (clean connector) = 0.39/0.51 dB; IL-1550 nm/1310 nm (contaminated connector) = 2.88/3.61 dB.                                                                                                                                                                      | Figure 11-9                                       | Objective Lens Numerical Aperture                                                                                                                                                                                                                                        |
|             | RL-1550 nm/1310 nm (clean connector) = 56.2/54.6; RL-1550 nm/1310 nm (contaminated                                                                                                                                                                                                                                                               |                                                   | Tables                                                                                                                                                                                                                                                                   |
| Figure 44.4 | connector) = 37.1/34.5 dB                                                                                                                                                                                                                                                                                                                        | Table 4-1                                         | Acceptance Criteria for Nonangled PC Polish                                                                                                                                                                                                                              |
| Figure 11-4 | Experimental results showing the impact of                                                                                                                                                                                                                                                                                                       |                                                   |                                                                                                                                                                                                                                                                          |
|             | particle distance from the core on IL and RL.                                                                                                                                                                                                                                                                                                    | Table 4-2                                         | Acceptance Criteria for Receptacles 6                                                                                                                                                                                                                                    |
|             | particle distance from the core on IL and RL.<br>An average particle size was 5-20 µm. A                                                                                                                                                                                                                                                         | Table 4-2<br>Table 7-1                            | Acceptance Criteria for Receptacles 6                                                                                                                                                                                                                                    |
|             | particle distance from the core on IL and RL.<br>An average particle size was 5-20 µm. A<br>large particle with the diameter >100 µm                                                                                                                                                                                                             |                                                   |                                                                                                                                                                                                                                                                          |
|             | particle distance from the core on IL and RL. An average particle size was 5-20 µm. A large particle with the diameter >100 µm located at the distance of ~18 µm from the core resulted in catastrophic failure as shown in Figure 11-5                                                                                                          | Table 7-1                                         | Acceptance Criteria for Receptacles                                                                                                                                                                                                                                      |
| Figure 11-5 | particle distance from the core on IL and RL. An average particle size was 5-20 µm. A large particle with the diameter >100 µm located at the distance of ~18 µm from the core resulted in catastrophic failure as shown in Figure 11-5                                                                                                          | Table 7-1<br>Table 7-2                            | Acceptance Criteria for Receptacles                                                                                                                                                                                                                                      |
| Figure 11-5 | particle distance from the core on IL and RL. An average particle size was 5-20 µm. A large particle with the diameter >100 µm located at the distance of ~18 µm from the core resulted in catastrophic failure as shown in Figure 11-5                                                                                                          | Table 7-1<br>Table 7-2<br>Table 8-1               | Acceptance Criteria for Receptacles                                                                                                                                                                                                                                      |
| Figure 11-5 | particle distance from the core on IL and RL. An average particle size was 5-20 µm. A large particle with the diameter >100 µm located at the distance of ~18 µm from the core resulted in catastrophic failure as shown in Figure 11-5                                                                                                          | Table 7-1 Table 7-2 Table 8-1 Table 8-2           | Acceptance Criteria for Receptacles                                                                                                                                                                                                                                      |
| Figure 11-5 | particle distance from the core on IL and RL. An average particle size was 5-20 µm. A large particle with the diameter >100 µm located at the distance of ~18 µm from the core resulted in catastrophic failure as shown in Figure 11-5                                                                                                          | Table 7-1 Table 7-2 Table 8-1 Table 8-2 Table 8-3 | Acceptance Criteria for Receptacles                                                                                                                                                                                                                                      |

December 2005 IPC-8497-1

# Cleaning Methods and Contamination Assessment for Optical Assembly

#### 1 SCOPE

The scope of this specification is to describe the methods of inspecting and cleaning all optical interfaces so that their interconnectivity does not result in loss of optical signal. It also describes methods of contamination prevention.

The target audience for this standard are Manufacturing Operators, Manufacturing Process Engineers, Quality Engineers and Field System Installers.

**1.1 Intent** The intent of this standard is not to state a specific all inclusive process or procedure for cleaning optical connectors but rather to show several processes which are used in the industry and the advantages and disadvantages for each process. It will also provide an evaluation method for each process so that each reader may test or qualify each process to find out which one works best for their application. It is not the intent of this standard to advocate any specific products even though some product names may be referenced as a matter of usage in processes/procedures/testing discussed in each section.

#### 1.2 Caution Reminders

**1.2.1 Safety Cautions** Operators shall ensure that there is no active laser light source generating a light signal through the fiber that is being cleaned or inspected. Remember many laser signals are invisible to the human eye.

It should also be noted to never look into a ferrule end-face while the system's laser is active. It is important to understand the equipment's operating procedures and warnings.

**1.2.2 Electrostatic Discharge (ESD) Caution** When working in an environment that couples optical fiber and electronic components the operator must adhere to all ESD prevention rules.

#### 2 APPLICABLE DOCUMENTS

2.1 IPC-Association Connecting Electronics Industry

**IPC-T-50** Terms and Definitions

**IPC-0040** Optoelectronics Assembly and Packaging Technology

2.2 IEC-International Electrotechnical Commission

EC-60194 Terms and Definitions

2.3 TIA-Telecommunications Industry Association TIA/EIA-604 (FOCIS) [13].

#### 3 TERMS AND DEFINITIONS

Terms used in this standard are in accordance with IPC-T-50, IEC 60194, or IPC-0040. The following additional terms are also defined.

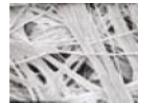
**Adaptor** The metal or plastic body that mates two connectors of same or different types.

**Alignment Sleeve** A circular collar that is usually mounted into a chassis connector intended to help align the connecting fibers as they are plugged into the chassis to complete an optical circuit.

Bit Error Rate (BER) See Bit Error Ratio.

**Bit Error Ratio (BER)** Used as the fundamental measure of the component's performance, and is defined as the following:

 $BER = \frac{E(t)}{N(t)}$ 


Where BER is the bit error ratio, E(t) is the number of bits received in error over time t, and N(t) is the total number of bits transmitted in time t.

Bit Error Rate Tester (BERT) Apparatus used to test for BER.

#### Cleaning Cassette Fabric



Woven Fabric



**Entangled Fabric** 

**Coaxial Illumination** When an object is being viewed using light which strikes the surface along the line of sight. This is usually accomplished with a beam splitter. This type of lighting shows the differences in surface textures.

**Colored Light** The hue of a given wavelength.

**DUT** Device Under Test.

**Detection** The ability of an optical system to detect an object or defect of a particular size.

**Eyepiece Lens** The lens of a compound microscope that is nearest to the eye of the observer.