Generic Requirements for Surface Mount Design and Land Pattern Standard

Developed by the Surface Mount Land Patterns Subcommittee (1-13) of the Printed Board Design Committee (1-10) of IPC

Supersedes:
IPC-SM-782A with Amendments 1 & 2

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1219
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 SCOPE ... 1
 1.1 Purpose .. 1
 1.2 Documentation Hierarchy 1
 1.2.1 Component and Land Pattern Family Structure 2
 1.3 Performance Classification 2
 1.3.1 Productivity Levels 2
 1.4 Land Pattern Determination 2
 1.5 Terms and Definitions 3

2 APPLICABLE DOCUMENTS 5
 2.1 IPC .. 5
 2.2 Electronic Industries Association 5
 2.3 Joint Industry Standards (IPC) 5
 2.4 International Electrotechnical Commission 6
 2.5 Joint Electron Device Engineering Council (JEDEC) 6

3 DESIGN REQUIREMENTS 6
 3.1 Dimensioning Systems 6
 3.1.1 Component Tolerancing 6
 3.1.2 Land Tolerancing 9
 3.1.3 Fabrication Allowances 9
 3.1.4 Assembly Tolerancing 10
 3.1.5 Dimension and Tolerance Analysis 10
 3.2 Design Productability 18
 3.2.1 SMT Land Pattern 18
 3.2.2 Standard Component Selection 18
 3.2.3 Circuit Substrate Development 18
 3.2.4 Assembly Considerations 18
 3.2.5 Provision for Automated Test 18
 3.2.6 Documentation for SMT 18
 3.3 Environmental Constraints 18
 3.3.1 Moisture Sensitive Components 18
 3.3.2 End-Use Environment Considerations 18
 3.4 Design Rules ... 20
 3.4.1 Component Spacing 20
 3.4.2 Single- and Double-Sided Board Assembly 20
 3.4.3 Component Stand-off Height for Cleaning 22
 3.4.4 Fiducial Marks 22
 3.4.5 Conductors .. 24
 3.4.6 Via Guidelines 24
 3.4.7 Standard PCB Fabrication Allowances 27
 3.4.8 Panelization .. 27
 3.5 Outer Layer Surface Finishes 30
 3.5.1 Solder Mask Finishes 30
 3.5.2 Solder Mask Clearances 30
 3.5.3 Land Pattern Surface Finishes 31

4 COMPONENT QUALITY VALIDATION 31
 4.1 Validation Techniques 31

5 TESTABILITY .. 32
 5.1 Board and Assembly Test 32
 5.1.1 Bare-Board Test 32
 5.1.2 Assembled Board Test 32
 5.2 Nodal Access .. 33
 5.2.1 Test Philosophy 33
 5.2.2 Test Strategy for Bare Boards 33
 5.3 Full Nodal Access for Assembled Board 33
 5.3.1 In-Circuit Test Accommodation 33
 5.3.2 Multi-Probe Testing 34
 5.4 Limited Nodal Access 34
 5.5 No Nodal Access ... 34
 5.6 Clam-Shell Fixtures Impact 34
 5.7 Printed Board Test Characteristics 35
 5.7.1 Test Land Pattern Spacing 35
 5.7.2 Test Land Size and Shape 35
 5.7.3 Design for Test Parameters 35

6 PRINTED BOARD STRUCTURE TYPES 36
 6.1 General Considerations 36
 6.1.1 Categories ... 39
 6.1.2 Thermal Expansion Mismatch 39
 6.2 Organic-Base Material 39
 6.3 Nonorganic Base Materials 39
 6.4 Alternative PCB Structures 39
 6.4.1 Supporting-Plane PCB Structures 39
 6.4.2 High-Density PCB Technology 39
 6.4.3 Constraining Core Structures 39
 6.4.4 Porcelainized Metal (Metal Core) Structures 39

7 ASSEMBLY CONSIDERATION FOR SURFACE MOUNT TECHNOLOGY (SMT) 39
 7.1 SMT Assembly Process Sequence 39
 7.2 Substrate Preparation 40
 7.2.1 Adhesive Application 40
 7.2.2 Conductive Adhesive 40
 7.2.3 Solder Paste Application 40
 7.2.4 Solder Preforms 41
 7.3 Component Placement 41
8 IPC-7352 DISCRETE COMPONENTS

8.1 Chip Resistors (RESC) .. 44
8.1.1 Basic Construction .. 45
8.1.2 Marking ... 45
8.1.3 Carrier Package Format 45
8.1.4 Resistance to Soldering 45
8.2 Chip Capacitors (CAPC) 45
8.2.1 Basic Construction .. 45
8.2.2 Marking ... 45
8.2.3 Carrier Package Format 45
8.2.4 Resistance to Soldering 45
8.3 Inductors (INDC, INDM, INDP) 45
8.3.1 Basic Construction .. 45
8.3.2 Marking ... 45
8.3.3 Carrier Package Format 45
8.3.4 Resistance to Soldering 45
8.4 Tantalum Capacitors (CAPT) 45
8.4.1 Basic Construction .. 46
8.4.2 Marking ... 46
8.4.3 Carrier Package Format 46
8.4.4 Resistance to Soldering 46
8.5 Metal Electrode Face Diodes (DIOMELF, RESMELF) .. 47
8.5.1 Basic Construction .. 47
8.5.2 Marking ... 47
8.5.3 Carrier Package Format 47
8.5.4 Resistance to Soldering 47
8.6 SOT23 ... 47
8.6.1 Basic Construction .. 47
8.6.2 Marking ... 47
8.6.3 Carrier Package Format 47
8.6.4 Resistance to Soldering 47
8.7 SOT89 .. 47
8.7.1 Basic Construction .. 47
8.7.2 Marking ... 48
8.7.3 Carrier Package Format 48
8.7.4 Resistance to Soldering 48
8.8 SOD123 .. 48
8.8.1 Basic Construction .. 48
8.8.2 Marking ... 48
8.8.3 Carrier Package Format 48
8.8.4 Resistance to Soldering 48
8.9 SOT143 .. 48
8.9.1 Basic Construction .. 48
8.9.2 Marking ... 48
8.9.3 Carrier Package Format 48
8.9.4 Resistance to Soldering 48
8.10 SOT223 .. 48
8.10.1 Basic Construction .. 48
8.10.2 Marking ... 48
8.10.3 Carrier Package Format 48
8.10.4 Resistance to Soldering 48
8.11 TO252 (DPAK Type) 49
8.11.1 Basic Construction .. 49
8.11.2 Marking ... 49
8.11.3 Carrier Package Format 49
8.11.4 Resistance to Soldering 49
8.12 Molded Body Diode (DIOSMB) 49

9 IPC-7353 GULLWING LEADED COMPONENTS, TWO SIDES

9.1 SOIC .. 50
9.1.1 Basic Construction .. 50
9.1.2 Marking ... 50
9.1.3 Carrier Package Format 50
9.1.4 Resistance to Soldering 50
9.2 SOP8/SOP63 (SSOIC) 50
9.2.1 Basic Construction .. 50
9.2.2 Marking ... 50
9.2.3 Carrier Package Format 50
9.2.4 Resistance to Soldering 50
9.3 SOP127 (SOP-IPC-782) 50
9.3.1 Marking ... 51
9.3.2 Carrier Package Format 51
9.3.3 Resistance to Soldering 51
9.4 TSSOP5 .. 51
9.4.1 Marking ... 51
9.4.2 Carrier Packages Format 51
Table 3-17 Conductor Width Tolerances, 0.046 mm
[0.00181 in] Copper, mm [in] 28
Table 3-18 Feature Location Accuracy (units: mm [in]) 28
Table 6-1 Printed Board Structure Comparison 37
Table 6-2 PCB Structure Selection Considerations 38
Table 6-3 PCB Structure Material Properties 38
Table 14-1 JEDEC Standard JEP95 Allowable Ball
Diameter Variations for FBGA (mm) 58
Table 14-2 Ball Diameter Sizes (mm) 61
Table 14-3 Land Approximation (mm) 62
Table 14-4 BGA Variation Attributes (mm) 62
Table 14-5 Land-to-Ball Calculations for Current and
Future BGA Packages (mm) 62
1 SCOPE

This document provides information on land pattern geometries used for the surface attachment of electronic components. The intent of the information presented herein is to provide the appropriate size, shape and tolerance of surface mount land patterns to insure sufficient area for the appropriate solder fillet to meet the requirements of IPC/EIA J-STD-001, and also to allow for inspection, testing, and rework of those solder joints.

1.1 Purpose

Although, in many instances, the land pattern geometries can be different based on the type of soldering used to attach the electronic part, wherever possible, land patterns are defined with consideration to the attachment process being used. Designers can use the information contained herein to establish standard configurations not only for manual designs but also for computer-aided design systems. Whether parts are mounted on one or both sides of the board, subjected to wave, reflow, or other type of soldering, the land pattern and part dimensions should be optimized to insure proper solder joint and inspection criteria.

Land patterns are dimensionally defined and are a part of the printed board circuitry geometry, as they are subject to the producibility levels and tolerances associated with plating, etching, assembly or other conditions. The producibility aspects also pertain to the use of solder mask and the registration required between the solder mask and the conductor patterns.

Note 1: The dimensions used for component descriptions have been extracted from standards developed by industrial and/or standards bodies. Designers should refer to these standards for additional or specific component package dimensions.

Note 2: For a comprehensive description of the given printed board and for achieving the best possible solder joints to the devices assembled, the whole set of design elements includes, beside the land pattern definition:
- Soldermask.
- Solder paste stencil.
- Clearance between adjacent components.
- Clearance between bottom of component and PCB surface, if relevant.
- Keepout areas, if relevant.
- Suitable rules for adhesive applications.

The whole of design elements is commonly defined as “mounting conditions.” This standard defines land patterns and includes recommendations for clearances between adjacent components and for other design elements.

Note 3: Elements of the mounting conditions, particularly the courtyard, given in this standard are related to the reflow soldering process. Adjustments for wave or other soldering processes, if applicable, have to be carried out by the user. This may also be relevant when solder alloys other than eutectic tin lead solders are used.

Note 4: This standard assumes that the land pattern follows the principle that, even under worst case conditions, the overlap of the component termination and the corresponding soldering land will be complete.

Note 5: Heat dissipation aspects have not been taken into account in this standard. Greater mass may require slower process speed to allow heat transfer.

Note 6: Heavier components (greater weight per land) require larger lands; thus, adding additional land pattern surface will increase surface area of molten solder to enhance capabilities of extra weight. In some cases the lands shown in the standard may not be large enough; in these cases, considering additional measures may be necessary.

Note 7: The land form may be rectangular with straight or rounded corners. In the latter case the area of the smallest circumscribed rectangle shall be equal to that of one with straight corners.

1.2 Documentation Hierarchy

This standard identifies the generic physical design principles involved in the creation of land patterns for surface mount components, and is supplemented by a shareware IPC-7351 Land Pattern viewer that provides, through the use of a graphical user interface, the individual component dimensions and corresponding land pattern recommendations based upon families of components. The IPC-7351 Land Pattern Viewer is provided on CD-ROM as part of the IPC-7351. Updates to land pattern dimensions, including patterns for new component families, can be found on the IPC website (www.ipc.org) under “PCB Tools and Calculators.” See Appendix C for more information on the IPC-7351 Land Pattern Viewer.