目 录

1. 🔻	芭围	1	3.7.8	枕头效应(HoP)缺陷	13
1.1	目的	1	3.7.9	不润湿开路(NWO)	14
1.1.1	意图	1	3.7.10	可靠性问题 ······	14
1.1.2	"应当"的解释	1			
1.1.3	表达	1	4 元器	8件考量	15
1.1.4	"Lead"的用法	1	4.1	半导体封装的比较及驱动因素	15
1.1.5	缩写和首字母缩写词	1	4.1.1	封装特点比较	15
			4.1.2	BGA 封装影响因素······	16
2 違	5用文件	1	4.1.3	成本关注	16
2.1	IPC ·····	1	4.1.4	元器件操作	16
2.2	Joint Standards ······	2	4.1.5	热性能	18
2.3	JEDEC ·····	2	4.1.6	空间限制 ·····	18
2.4	EIA ·····	3	4.1.7	电气性能	18
			4.1.8	机械性能	18
3 核	F准选择和 BGA 实施管理	3	4.2	BGA 封装中的芯片安装 ······	19
3.1	术语和定义	3	4.2.1	金属线键合	19
3.1.1	阻焊膜限定(SMD)BGA 焊盘 ···········	3	4.2.2	倒装芯片	20
3.1.2	非阻焊膜限定(NSMD)BGA 焊盘 ········	3	4.2.3	改变 BGA 端子材料	20
3.1.3	不润湿开路(NWO) · · · · · · · · · · · · · · · · · · ·	3	4.2.4	非植球 BGA 的选择	21
3.1.4	枕头效应 (HoP) ····································	3	4.3	标准	22
3.2	概述	3	4.3.1	BGA 行业标准 · · · · · · · · · · · · · · · · · · ·	22
3.3	组件架构说明	4	4.3.2	BGA 封装节距······	24
3.3.1	连接盘图形和印制板的考量	4	4.3.3	BGA 封装外形······	25
3.3.2	技术比较	5	4.3.4	焊球尺寸关系	25
3.3.3	组装设备影响	8	4.3.5	叠装 (PoP) BGA	26
3.3.4	模板要求	8	4.3.6	共面性	26
3.3.5	检验要求	8	4.4	关于元器件封装形式的考量	26
3.3.6	测试	8	4.4.1	焊球合金	27
3.4	投放市场准备	8	4.4.2	焊球连接工艺	30
3.5	方法	9	4.4.3	陶瓷球栅阵列 (CBGA) ······	30
3.6	工艺步骤分析	9	4.4.4	陶瓷柱栅阵列(CCGA) ······	31
3.7	BGA 的局限性和问题 · · · · · · · · · · · · · · · · · · ·	9	4.4.5	载带球栅阵列	35
3.7.1	目视检验	9	4.4.6	多芯片封装	35
3.7.2	湿敏性	10	4.4.7	系统级封装 (SiP)	36
3.7.3	BGA 和印制板的共面性及翘曲	10	4.4.8	三维(3D)折叠封装技术 ·······	36
3.7.4	返工	11	4.4.9	焊球堆叠	36
3.7.5	成本	11	4.4.10	折叠和堆叠的封装组合	37
3.7.6	BGA 中的空洞 · · · · · · · · · · · · · · · · · · ·	11	4.4.11	叠装封装 (PoP) ······	37
3.7.7	焊盘坑裂	11	4.4.12	多芯片封装的优势	37

4.5	BGA 连接器和插座······	38	6.1.1	贴片组装	58
4.5.1	BGA 连接器材料考量 · · · · · · · · · · · · · · · · · · ·	38	6.1.2	维修/返工要求	58
4.5.2	BGA 连接器的连接考量······	38	6.1.3	整体布局	59
4.5.3	BGA 材料和插座类型 · · · · · · · · · · · · · · · · · · ·	39	6.1.4	对准图形(丝印油墨、铜制标志、引脚1	
4.5.4	BGA 插座连接考量······	39		标识符)	59
4.6	BGA 构造材料 · · · · · · · · · · · · · · · · · · ·	40	6.2	连接位置(连接盘图形和导通孔)	60
4.6.1	BGA 基板材料类型 · · · · · · · · · · · · · · · · · · ·	40	6.2.1	连接盘直径大小及其对布线的影响	60
4.6.2	BGA 基板材料性质 · · · · · · · · · · · · · · · · · · ·	41	6.2.2	阻焊膜限定(SMD)与金属限定连接盘	
4.7	BGA 封装设计考量······	42		设计	61
4.7.1	电源和接地层	42	6.2.3	导体宽度	62
4.7.2	信号完整性	43	6.2.4	导通孔尺寸和位置	62
4.7.3	封装内置散热片	43	6.2.5	影响 BGA 阻焊膜的参数	64
4.8	封装的接收标准和运输方式	43	6.2.6	多栅格 BGA 连接盘图形阵列设计	64
4.8.1	焊球缺失	43	6.3	出线和布线策略	65
4.8.2	焊球空洞 ·····	44	6.3.1	出线策略	68
4.8.3	焊球连接完整性	44	6.3.2	表面导体和间距宽度	68
4.8.4	封装和焊球共面性	44	6.3.3	连接盘至导通孔(狗骨)布线图形	69
4.8.5	湿度敏感性 (烘烤、贮存、操作、再烘烤)	45	6.3.4	减轻机械应变的设计	70
4.8.6	运输媒介(载带、托盘、管)	46	6.3.5	未遮蔽焊盘内导通孔及其对可靠性的影响	71
			6.3.6	密节距 BGA(FBGA)连接盘内微导通孔	
5 印制	板及其它安装结构	46		策略	72
5.1	基板	46	6.3.7	电源和接地连接	72
5.1.1	有机基板	46	6.4	波峰焊接对正面 BGA 的影响	73
5.1.2	无机基板	46	6.4.1	正面再流焊	73
5.1.3	高密度互连(HDI)叠构多层 ·············	46	6.4.2	正面再流焊的影响	73
5.2	基材考量	48	6.4.3	避免正面再流的方法	75
5.2.1	树脂系统	48	6.4.4	无铅印制板的正面再流	75
5.2.2	层压板材料性质	48	6.5	可测试性和测试点的访问 ·····	75
5.3	印制板表面处理	49	6.5.1	元器件测试	75
5.3.1	热风焊料整平 (HASL)	50	6.5.2	测试和老化过程中对焊球的损伤	76
5.3.2	有机可焊性保护(OSP)涂层 ·············	51	6.5.3	印制板测试 ·····	77
5.3.3	贵金属涂层	51	6.5.4	印制板组件测试	78
5.4 阻	焊膜	55	6.6	其它可制造性设计(DfM)问题	79
5.4.1	湿膜和干膜阻焊膜	55	6.6.1	在制板 / 拼托板设计	80
5.4.2	喷射式阻焊膜	55	6.6.2	中间制程/最终产品测试附连板	80
5.4.3	阻焊膜涂覆时印制板对拼板胶片的对位 …	56	6.7	散热管理	82
5.5	导通孔保护	56	6.7.1	传导	82
5.5.1	侵入孔	56	6.7.2	辐射	82
5.5.2	导通孔掩蔽、堵塞和填塞	56	6.7.3	对流	83
			6.7.4	散热界面材料	83
6 印制	电路组件设计考量	58	6.7.5	BGA 散热片连接方法 ······	84
6.1	元器件放置和间隙	58			

7 BG	A 组件	86	7.8.1	焊料桥连	136
7.1	表面贴装工艺	86	7.8.2	冷焊	136
7.1.1	焊膏及其施加	86	7.8.3	开路	136
7.1.2	元器件贴装影响	92	7.8.4	受热不充分 / 不均匀	136
7.1.3	BGA 贴装视觉系统 ······	92	7.8.5	枕头效应 (HoP)	137
7.1.4	再流焊接及温度曲线	94	7.8.6	不润湿开路(NWO)/ 焊球悬空 ···········	139
7.1.5	材料对助焊剂活化、元器件损伤及可焊性		7.8.7	元器件缺陷	139
	的影响	102	7.9	维修工艺	140
7.1.6	清洗与免清洗	102	7.9.1	返工和维修理念	140
7.1.7	封装间隙高度	103	7.9.2	BGA 的拆除 ······	140
7.2	组装后的工艺	104	7.9.3	替换	141
7.2.1	敷形涂覆	104			
7.2.2	底部填充和粘合剂的使用	105	8 可靠	性	143
7.2.3	印制板和模块的分板	111	8.1	BGA 组件的可靠性因素 · · · · · · · · · · · · · · · · · · ·	144
7.3	检测技术	111	8.1.1	循环应变	144
7.3.1	X 射线检验 ·····	111	8.1.2	疲劳	144
7.3.2	X 射线图像采集 ······	112	8.1.3	蠕变	145
7.3.3	X 射线系统术语的定义和讨论	113	8.1.4	蠕变和疲劳的交互作用	146
7.3.4	X 射线图像分析	117	8.1.5	机械负载下的可靠性	146
7.3.5	声学扫描显微镜(SAM) · · · · · · · · · · · · · · · · · · ·	119	8.2	焊料连接的损伤机理和失效	147
7.3.6	BGA 间隙测量·····	121	8.2.1	锡银铜(SAC)对锡铅 BGA 焊点的热疲劳	
7.3.7	光学检测(内窥镜)	121		裂纹生长机理的比较	148
7.3.8	破坏性分析方法	122	8.2.2	混合合金焊接	149
7.4	测试和产品验证	125	8.3	焊点和连接类型	150
7.4.1	电气测试 ·····	125	8.3.1	整体膨胀不匹配	151
7.4.2	功能测试 (FT) 覆盖 ······	125	8.3.2	局部膨胀不匹配	151
7.4.3	老化测试	125	8.3.3	内部膨胀不匹配	151
7.4.4	产品筛选测试	125	8.4	焊料连接失效	151
7.5	空洞识别	125	8.4.1	焊料连接失效分类	151
7.5.1	空洞的来源	126	8.5	影响可靠性的关键因素	156
7.5.2	空洞的分类	127	8.5.1	封装技术	156
7.5.3	BGA 焊点中的空洞······	127	8.5.2	间隙高度	157
7.6	空洞测量 ·····	128	8.5.3	印制板设计考量	158
7.6.1	X 射线探测和测量注意事项 ······	128	8.5.4	陶瓷栅阵列(CGAs)焊接连接的可靠性 ···	158
7.6.2	空洞的影响	128	8.5.5	BGA 无铅焊接 · · · · · · · · · · · · · · · · · · ·	159
7.6.3	空洞协议开发	129	8.6	可靠性设计(DfR)流程	165
7.6.4	空洞评估的抽样计划	130	8.7	验证和鉴定测试	165
7.7	减少空洞的工艺控制	131	8.8	筛选程序	166
7.7.1	工艺参数对于空洞形成的影响		8.8.1	焊点缺陷	
7.7.2	焊球中空洞的工艺控制标准	134	8.8.2	筛选建议 ·····	
7.7.3	工艺控制标准	135	8.9	加速可靠性测试	166
7.8	焊接缺陷	136			

9 1	二艺问题排查	166		图	
9.1	阻焊膜限定(SMD)BGA 状况 ············	166	图 3-1	BGA 封装制造工艺······	4
9.1.1	阻焊膜限定(SMD)和非阻焊膜限定		图 3-2	多芯片模块 (MCM) 类型 2S-L-WB ········	5
	(NSMD) 连接盘······	167	图 3-3	导体宽度与节距关系	7
9.1.2	产品印制板上的阻焊膜限定(SMD)		图 3-4	金属线键合球栅阵列 (BGA)	7
	连接盘	167	图 3-5	倒装芯片键合球栅阵列(BGA) ·······	8
9.1.3	阻焊膜限定(SMD)BGA 失效 ···········	168	图 3-6	BGA 翘曲·····	10
9.2	BGA 焊球过度塌陷状况 ······	168	图 3-7	焊盘坑裂示例	12
9.2.1	无散热块的 BGA 焊球形状, 500μm 的间隙		图 3-8	BGA 焊点各种可能的失效模式······	12
	高度	168	图 3-9	枕头效应(HoP)焊点缺陷的角视图(左)	
9.2.2	有散热块的 BGA 焊球形状, 375μm 的间隙			和切片图 (右)	13
	高度	169	图 3-10	枕头效应(HoP)开路缺陷的切片图 ········	13
9.2.3	有散热块的 BGA 球形, 300μm 的间隙		图 3-11	不润湿开路(NWO)缺陷的侧视和切片	
	高度	169		视图示例	14
9.2.4	关键的焊膏条件	169	图 4-1	面阵列封装的端子类型	17
9.2.5	通过 X 射线和切片确定空洞 ······	169	图 4-2	芯片上基板 (BOC) BGA 结构	19
9.2.6	空洞和非均匀焊球	170	图 4-3	BOC 类 BGA 模封后的顶部 ·······	20
9.2.7	蛋壳空洞	170	图 4-4	BGA 基板上的倒装芯片(带凸点芯片)···	20
9.3	BGA 翘曲·····	170	图 4-5	采用锡铅的 BGA 焊点	22
9.3.1	BGA 翘曲·····	171	图 4-6	JEDEC 叠装元器件标准结构 ······	26
9.3.2	由于载板翘曲导致的焊点开路	171	图 4-7	Dynamic Warpage Plot with Temperature for a	
9.4	焊点状况	172		Flip Chip BGA Package	28
9.4.1	目标焊接条件	172	图 4-8	具有液相线温度 100 ℃到 200 ℃且不含有	
9.4.2	过度氧化的焊球	172		Pb,Cd 或 Au 的低温合金 ······	28
9.4.3	退润湿	173	图 4-9	锡铋相图	29
9.4.4	不润湿	173	图 4-10	典型的锡铋焊料合金微观结构	29
9.4.5	由连接盘污染引起的不完整连接	174	图 4-11	塑封球栅阵列(PBGA) · · · · · · · · · · · · · · · · · · ·	30
9.4.6	变形的焊球	174	图 4-12	热增强型陶瓷球栅阵列(CBGA)封装的	
9.4.7	变形后的焊球 - 动态翘曲	175		横截面	30
9.4.8	焊料和助焊剂不充足以形成适当的焊点 …	175	图 4-13	模压聚合物灌封的陶瓷球栅阵列(CBGA)	
9.4.9	端子接触面积减少	176		封装	31
9.4.10	0 焊料桥连	176	图 4-14	典型铜带缠绕的陶瓷柱栅阵列(CCGA)···	31
9.4.1	1 不完全焊料再流	177	图 4-15	各种焊料柱的塑封 BGA(PBGA) ·········	32
9.4.12	2 焊料缺失	177	图 4-16	典型具有铜带缠绕的焊料柱	32
9.4.1	3 不润湿开路(NWO)	178	图 4-17	覆盖有 SnPb40 外层、具有电镀铜层的	
9.4.1	4 枕头效应(HoP)焊点	178		PbSn10 焊料柱剖视图 ······	32
			图 4-18	电镀 SnPb 微线圈(左)和镀金微线圈	
附录	A 减少空洞发生的工艺控制特性描述	179		(右)	33
			图 4-19	柱栅阵列(CGA1152)陶瓷 IC 封装上的	
附录	B 词汇表及首字母缩写词 ······	185		镀金微线圈弹簧	33
			图 4-20	柱栅阵列(CGA)封装上带有 SAC305	
				填充的微线圈弹簧	33

图 4-21	带 SnPb37 填充的微线圈弹簧(镀 SnPb40)		图 5-11	直接浸金(DIG)的图形描述	54
	柱栅阵列(CGA1152) ·······	33	图 5-12	微空洞示例	55
图 4-22	聚酰亚胺膜基引线键合 uBGA 封装基板 …	35	图 5-13	导通孔堵塞方法	57
图 4-23	单一双金属层载带基板封装内电路布线		图 6-1	BGA 对准标记	59
	比较	35	图 6-2	BGA 器件的连接盘······	61
图 4-24	单封装芯片叠加 BGA ······	36	图 6-3	金属限定连接盘连接外形	62
图 4-25	定制八芯片 (倒装芯片及金属线键合)		图 6-4	阻焊膜应力集中	62
	SiP 组件	36	图 6-5	焊点形状对比	62
图 4-26	折叠式多芯片 BGA 封装 ······	36	图 6-6	好 / 差的阻焊膜设计	63
图 4-27	八层焊球堆叠封装	36	图 6-7	金属限定连接盘示例	63
图 4-28	单面小外形双排直列存储器模组		图 6-8	差的阻焊膜定位	64
	(SO-DIMM) 存储卡组件 ······	37	图 6-9	好的阻焊膜定位	64
图 4-29	折叠以及堆叠的多芯片 BGA 封装 ········	37	图 6-10	焊球随布 BGA 器件的焊球随布连接盘图形	
图 4-30	叠装封装 (PoP) 组件	37		设计	65
图 4-31	BGA 连接器 ······	38	图 6-11	均匀网格 BGA 连接盘图形	65
图 4-32	带真空帽的 BGA 连接器 ······	38	图 6-12	BGA 象限图形	66
图 4-33	针栅阵列(PGA)插座引脚 ·······	39	图 6-13	方形阵列	66
图 4-34	带有和不带有贴装盖的针栅阵列(PGA)		图 6-14	矩形阵列	66
	插座	39	图 6-15	有空缺的矩形阵列	66
图 4-35	盘栅阵列(LGA)接触引脚 ······	39	图 6-16	焊球缺失的方形阵列	67
图 4-36	带有和不带有贴装盖的盘栅阵列(LGA)		图 6-17	散布阵列 ·····	67
	插座	39	图 6-18	导体布线策略	68
图 4-37	BGA 焊球缺失的示例 ······	43	图 6-19	不同阵列节距的导体和间距宽度	69
图 4-38	进料检验时共晶焊球中的空洞示例	44	图 6-20	单根和两根导体布线	69
图 4-39	焊球和连接盘表面状况示例	44	图 6-21	典型的连接盘至导通孔(狗骨)布局	69
图 4-40	建立 BGA 共面性要求	45	图 6-22	连接盘至导通孔(狗骨)布线选项	69
图 4-41	焊球触点位置公差	45	图 6-23	BGA 连接盘至导通孔(狗骨)连接盘	
图 5-1	采用激光打孔生成的 HDI 可能叠构 ········	47		图形的优先导体布线方向	70
图 5-2	采用蚀刻和机械工艺生成的 HDI 可能		图 6-24	螺钉和支撑的优先布局	70
	叠构	47	图 6-25	连接器螺钉支撑布局	70
图 5-3	温度超过 Tg 的膨胀率 ······	48	图 6-26	具有焊盘内导通孔结构的 0.75mm 焊球	
图 5-4	热风焊料整平(HASL)表面拓扑结构			切片图	71
	比较	51	图 6-27	显示导通孔遮蔽与焊球的焊盘内导通孔	
图 5-5	化学镀镍 / 浸金(ENIG)结构说明 ········	52		设计的切片图示	71
图 5-6	镍与镍锡金属间化合物层之间的显示有		图 6-28	焊盘内导通孔工艺描述(BGA 在顶部)···	72
	裂纹黑焊盘断裂	52	图 6-29	微导通孔示例(剖面图)	72
图 5-7	黑焊盘表面典型的龟裂外貌	52	图 6-30	微导通孔内的空洞	72
图 5-8	浸金表面下大面积区域的黑焊盘, 其严重		图 6-31	BGA 接地或电源连接 ······	73
	的腐蚀刺穿富磷层进入富镍层 ······	53	图 6-32	正面再流焊点退润湿和焊球变形案例	73
图 5-9	金脆	53	图 6-33	正面元器件混装板组件, 波峰焊温度	
图 5-10	化学镍/化学钯/浸金(ENEPIG)结构			曲线	74
	说明	53			

图 6-34	波峰焊接时,到达BGA 焊点的热通道 ···	74	图 7-18	由 SAC 焊球和铋锡焊点增强焊膏(JRP)	
图 6-35	避免 BGA 正面焊点在波峰焊时再流的			形成的混合合金 BGA 焊点	100
	方法	75	图 7-19	对于混合合金 SAC-BiSnBGA 焊点,焊膏量	I.
图 6-36	镊子类工具接触焊球侧面后案例	76		对铋混合区域的影响	101
图 6-37	弹簧探针与焊球底部电气接触后的压痕 …	76	图 7-20	对于桨叶触点式 BGA 插座,焊球和焊膏的	
图 6-38	面阵列连接盘图形测试	77		三种组合的焊点形状及微观结构	101
图 6-39	板拼联	81	图 7-21	印制板 BGA 连接盘周围阻焊膜去除后的	
图 6-40	梳形电路示例	81		影响	104
图 6-41	使用粘合剂连接 BGA 的散热片	84	图 7-22	敷形涂覆使用不当的影响	105
图 6-42	使用卡构连接 BGA 的散热片	85	图 7-23	BGA 和其它封装的底部填充粘合剂使用	
图 6-43	用勾住印制板孔的卡钩,连接 BGA 的			方法图	106
	散热片	85	图 7-24	不完全底部填充覆盖的 BGA 封装	107
图 6-44	用勾住焊接在印制板上柱子的卡钩,连接		图 7-25	两个平行表面之间的底部填充剂	
	BGA 的散热片	85		的流动	107
图 6-45	将散热片引脚通过波峰焊焊接在通孔中,		图 7-26	底部填充中空洞的示例	108
	连接 BGA 的散热片	86	图 7-27	部分底部填充示例	108
图 7-1	用于宽厚比和面积比计算的模板开孔标识		图 7-28	角落施加粘合剂的 BGA 显微剖切图	109
	(焊料模板特征尺寸)	88	图 7-29	角落施加粘合剂的 BGA 顶视图 ···········	109
图 7-2	焊膏浸渍后的 BGA 焊球 ······	90	图 7-30	再流前角落施加粘合剂的关键尺寸	109
图 7-3	腔体板和 3D 模板	90	图 7-31	角落施加粘合剂典型的失效模式	109
图 7-4	带两个空腔的 3D 模板 ······	90	图 7-32	BGA 焊点聚合物增强四种方法的示例 ······	110
图 7-5	狭缝金属刮刀 ·····	91	图 7-33	焊点密封材料(SJEM) ······	110
图 7-6	腔体隔离区	91	图 7-34	X 射线技术基本原理	112
图 7-7	高铅和共晶焊球及其焊点比较	91	图 7-35	枕头效应(HoP)焊点的 X 射线示例	112
图 7-8	用于离线教学的焊球随布图像捕获	93	图 7-36	焊球触点空洞的三个 X 射线图示例 ········	112
图 7-9	BGA 或其附近各位置的峰值再流温度		图 7-37	手动 X- 射线系统图像质量的两个示例 …	113
	示例	94	图 7-38	枕形失真和电压过曝的 X- 射线例子 ······	113
图 7-10	锡铅组件再流焊温度曲线原理图	96	图 7-39	透射图像 (2D)	114
图 7-11	无铅组件再流焊温度曲线原理图	96	图 7-40	断层合成图像(3D) ······	114
图 7-12	具有大型和小型元器件的印制板组件上的		图 7-41	分层成像 3D 自动 X 射线检验(AXI)	
	热电偶位置	97		截面图像	114
图 7-13	热电偶在 BGA 上的建议位置	97	图 7-42	高质量的 2D 透射 X 射线图像示例	115
图 7-14	热电偶在 BGA 连接器上的适当位置 ······	97	图 7-43	印制板倾斜的斜视观察	115
图 7-15	采用 SAC 焊膏 (上图), BiSn 基型或韧性		图 7-44	探测器倾斜的斜视观察	115
	冶金焊膏(中图)和含有树脂焊点增强型		图 7-45	自上向下观看 FBGA 焊点 ······	116
	焊膏(JRP)(下图)的 SAC BGA 器件组装		图 7-46	FBGA 焊点的斜视图 ······	116
	工艺比较	98	图 7-47	大物台计算机断层扫描(CT)/部分	
图 7-16	SAC、BiSnAg 以及 JRP 焊膏的再流温度			CT 原理 ·····	116
	曲线的比较	99	图 7-48	大物台计算机断层扫描(CT)(左侧)和	
图 7-17	由 SAC 焊球和韧性合金铋锡焊膏焊接形成			3D 渲染 (右侧),显示枕头效应 (HoP)…	117
	的混合合金 BGA 焊点 ······	100	图 7-49	大物台计算机断层扫描 (CT) ··············	117

图 7-50	断层合成成像	117	图 7-81	显示 BGA 的翘曲的 X 射线图像	140
图 7-51	扫描束 X- 射线分层成像	118	图 7-82	BGA/ 组件热屏蔽示例	141
图 7-52	采用加热台观察到的 QFN 器件空洞形成		图 8-1	由于热机械疲劳导致的焊点裂纹示例	148
	动态	119	图 8-2	热循环后的 BGA 显示有疲劳裂纹的	
图 7-53	典型的声学扫描显微镜配置	120		裂纹(A)和粗化(B)	148
图 7-54	同一BGA的 C-扫描图像(左)和 T扫描		图 8-3	陶瓷球栅阵列(CBGA)模块中共晶锡铅	
	(右)图像	120		焊点的热疲劳裂纹扩张	149
图 7-55	内窥镜示例 1	121	图 8-4	陶瓷球栅阵列(CBGA)模块中	
图 7-56	内窥镜示例 2	121		SnAg3.8Cu0.7 焊点的热疲劳裂纹扩张	149
图 7-57	内窥镜示例 3	121	图 8-5	用典型工艺窗口的下限温度组装 1% 银焊	
图 7-58	工程裂纹评估技术	122		球合金,形成不完整的焊点	150
图 7-59	穿过焊球中空洞的焊球切片	122	图 8-6	由于硅芯片与印制板热膨胀系数(CTE)	
图 7-60	焊球/连接盘界面处裂纹始发的切片	123		不匹配引起的焊点失效	151
图 7-61	染色和拉拔(撬动)显示 BGA 焊盘或		图 8-7	呈现颗粒状外观的冷焊点	152
	印制板表面没有染色迹象	123	图 8-8	连接盘污染(阻焊膜残留)	152
图 7-62	染色和拉拔(撬动)显示印制板和 BGA		图 8-9	焊球脱落	152
	焊盘都有染色迹象	124	图 8-10	焊球缺失	153
图 7-63	染色和拉拔(撬动)显示层压板断裂		图 8-11	倒装芯片 BGA 和印制板的动态翘曲	153
	(焊盘坑裂), BGA 侧和印制板侧有染色		图 8-12	再流焊后严重翘曲的 BGA 和印制板导致的	
	迹象	124		焊点缺陷 ·····	154
图 7-64	焊球至连接盘界面成群聚集的小空洞	126	图 8-13	可接受凸形焊点示例	154
图 7-65	BGA 焊点内各种类型空洞的典型尺寸和		图 8-14	可接受柱状焊点示例	155
	位置	127	图 8-15	焊盘坑裂的两个示例(位于 BGA 角落)···	155
图 7-66	带有空洞的焊球 X 射线图像 ······	128	图 8-16	节距 1mm 以下的无铅焊球的焊盘坑裂 ···	155
图 7-67	采用标准再流焊接(上)和真空辅助		图 8-17	切面图示再流过程中不充分熔融的焊点 …	156
	再流焊接(下)BGA 焊点的比较 · · · · · · · · · · · · · · · · · · ·	133	图 8-18	阻焊膜影响	158
图 7-68	真空辅助对流再流炉	133	图 8-19	非常大的空洞导致的可靠性测试失效	158
图 7-69	真空辅助气相再流炉	134	图 8-20	SnAgCu(SAC)BGA 焊球的内窥镜	
图 7-70	时间与压力关系图显示了真空辅助和			照片	161
	高压焊接工艺的差别	134	图 8-21	锡铅且向后兼容与无铅印制板组装再流焊	
图 7-71	连接盘和印制板界面空洞区域示例	135		曲线比较	162
图 7-72	显示为不均匀受热的 X 射线图像 ···········	136	图 8-22	用 SnPb 焊膏采用标准 SnPb 再流曲线组装	
图 7-73	45°角的 X 射线图像,显示 BGA 的一个			至印制板上的 BGA SAC 焊球切片的显微	
	角落受热不足	136		照片	162
图 7-74	显示焊球与焊膏没有熔融的枕头效应		图 8-23	用锡铅焊膏采用向后兼容再流曲线组装至	
	(HoP) 示例 ······	137		印制板上的 BGA SAC 焊球切片的显微	
图 7-75	枕头效应(HoP)产生的演变过程	137		照片	163
图 7-76	封装严重翘曲造成的枕头效应(HoP)······	138	图 8-24	混合冶金(SAC/ 锡铅)BGA 焊点替代	
图 7-77	液相时间延时(LTD)示例 ·······	138		选项	164
图 7-78	再流后印制板上未熔融的焊料颗粒	138	图 9-1	阻焊膜限定(SMD)连接盘引起的裂纹 ···	167
	焊球悬空缺陷示例		图 9-2	阻焊膜在连接盘上侵入过多	167
图 7-80	爆米花 X 射线图像	139	图 9-3	阻焊膜限定(SMD)BGA 焊点失效 ······	168

图 9-4	无散热块的 BGA 焊球形状, 500μm 的间隙		表 4-6	JEDEC 已登记的 BGA 外形示例 ·········	26
	高度	168	表 4-7	无铅合金变化	27
图 9-5	有散热块的 BGA 焊球形状, 375μm 的间隙		表 4-8	柱栅阵列(CGA)连接盘尺寸近似值 ······	34
	高度	169	表 4-9	柱栅阵列(CGA)合金和构造类型	34
图 9-6	有散热块的 BGA 焊球形状, 300μm 的间隙		表 4-10	IPC-4101 FR-4 性能汇总 - 材料规格单	
	高度	169		说明,为更好承受无铅组装配方	41
图 9-7	空洞和非均匀焊球	170	表 4-11	BGA 封装基板常用介电材料的典型性质···	42
图 9-8	蛋壳空洞 ·····	170	表 4-12	按照焊球尺寸的受控共面性	45
图 9-9	角落发生桥连的内凹(哭脸)BGA ········	171	表 4-13	湿敏等级和车间寿命	46
图 9-10	由于载板翘曲导致的焊点开路	171	表 5-1	各种印制板表面处理的关键属性	50
图 9-11	目标焊接条件	172	表 5-2	基于表面处理工艺对导通孔填塞 / 侵入	
图 9-12	过度氧化的焊球	172		的评估	56
图 9-13	焊料在界面退润湿	173	表 5-3	导通孔填塞选项	58
图 9-14	不润湿	173	表 6-1	节距为 1.27mm 的 BGA(焊球直径	
图 9-15	由连接盘污染引起的不完整连接	174		0.75mm) 连接盘之间的导体数量 ··········	60
图 9-16	焊球变形	174	表 6-2	节距为 1mm 的 BGA(焊球直径 0.60mm)	
图 9-17	柱状变形焊球	175		连接盘之间的导体数量	60
图 9-18	焊球悬空	175	表 6-3	节距为 0.80mm 的 BGA(焊球直径 0.50mm)
图 9-19	同一个 BGA 上出现拉伸后的和正常的焊料			连接盘之间的导体数量	60
	连接	176	表 6-4	节距为 0.65mm 的 BGA(焊球直径 0.40mm)
图 9-20	焊料桥连	176		连接盘之间的导体数量	60
图 9-21	不完全的焊料再流	177	表 6-5	节距为 0.50mm 的 BGA(焊球直径 0.30mm)
图 9-22	焊膏沉积缺失	177		连接盘之间的导体数量	61
图 9-23	不润湿开路(NWO)	178	表 6-6	最大连接盘与节距(mm)的关系 ········	61
图 9-24	枕头效应 (HoP) ·······	178	表 6-7	全阵列出线策略	68
图 A-1	典型空洞评估流程图	179	表 6-8	不同阵列节距的导体和间距宽度	68
图 A-2	起始于角落引脚,带有裂纹的 BGA 中		表 6-9	材料类型对传导的影响	82
	空洞	183	表 6-10	特定材料辐射系数额定值	83
图 A-3	与连接盘大小相关的空洞直径	184	表 7-1	按类型和网目的焊球尺寸分布	87
			表 7-2	不同节距器件获得良好焊膏释放的焊粉	
	表			类型的建议(S/P 比例 > 4.2) ··············	87
表 3-1	多芯片模块 (MCM) 定义	5	表 7-3	不同 BGA 节距的模板厚度	87
表 3-2	双层电路出线数 vs. 阵列尺寸	6	表 7-4	常见模板技术和选择的优缺点	89
表 3-3	焊盘坑裂相关的 IPC 标准清单	13	表 7-5	密节距 BGA(FBGA)印刷选项 ············	90
表 4-1	JEDEC 标准 JEP95-1/5 允许的 FBGA 的		表 7-6	陶瓷阵列封装焊膏体积要求示例	92
	焊球直径变化	23	表 7-7	锡铅和锡银铜合金温度曲线比较	95
表 4-2	塑封 BGA (PBGA) 的焊球直径 ···········	24	表 7-8	检测方法应用建议	111
表 4-3	芯片尺寸 BGAs (DSBGAs) 焊球直径		表 7-9	检测的视野	
	大小			空洞分类	
表 4-4	连接盘图形设计	24	表 7-11	建议的空洞协议示例	129
表 4-5	BGA 封装连接盘至焊球间尺寸		表 7-12	各种焊球直径下焊球与空洞大小图像	
	计算(mm) ·····	25		对比	130

2019年1月 IPC-7095D-WAM1 CN

表 7-13	锡铅组件的维修工艺温度曲线	143
表 7-14	无铅组件的维修工艺温度曲线	143
表 8-1	BGA 典型间隙高度 · · · · · · · · · · · · · · · · · · ·	157
表 8-2	常用焊料合金的熔点, 优点和缺点	159
表 8-3	无铅组装的类型	161
表 A-1	采用 1mm、1.27mm 和 1.5mm 节距的连接盘	i.
	纠正措施指标	181
表 A-2	采用 0.5mm、0.65mm 或 0.8mm 节距的连接	盘
	纠正措施指标	182
表 A-3	采用 0.3 mm、 0.4 mm 或 0.5 mm 节距的盘内	
	微导通孔连接盘纠正措施指标	183