目次

1 適用	範囲
1.1	目的1
1.2	クラスの分類
1.3	計測単位
1.4	要求事項の定義
1.5	工程管理の要求事項
1.6	優先順位
1.6.1	条項参照
1.7	「リード」という表記の使用
1.8	略語および頭字語
1.9	用語および定義
1.9.1	下面電極部品 (BTC)
1.9.2	ウェッタブルサイドフランク
1.9.3	露出ダイパドル
1.9.4	サーマルパッド
1.9.5	サーマルビア
2 関連	文書
2.1	IPC
2.2	Joint Standards
2.3	ASME
2.4	IEC
2.5	JEDEC ······ 4
2.5	JEDEC 4
2.5 3 BTC	JEDEC ······ 4 の一般概要 ······ 5
2.53 BTC3.1	JEDEC ····· 4 の一般概要 ····· 5 BTC のタイプ ···· 5
 2.5 3 BTC 3.1 3.1.1 	JEDEC 4 の一般概要 5 BTC のタイプ 5 サーマルダイパドル付き BTC 5
 2.5 3 BTC 3.1 3.1.1 3.1.2 	JEDEC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3	JEDEC 4 の一般概要 5 BTC のタイプ 5 サーマルダイパドル付き BTC 5 サーマルダイパドルなしの BTC 5 FC-QFN (Flip Chip QFN) 5
 2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3 3.1.4 	JEDEC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	JEDEC 4 の一般概要 5 BTC のタイプ 5 サーマルダイパドル付き BTC 5 サーマルダイパドルなしの BTC 5 FC-QFN (Flip Chip QFN) 5 LGA(Land Grid Array) 5 BTC のその他の識別名称 5
2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6	JEDEC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7	JEDEC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2	JEDEC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3	JEDEC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3	JEDEC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 3.3.1	JEDEC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 3.3.1 3.3.2	JEDEC 4 の一般概要 5 BTC のタイプ 5 サーマルダイパドル付き BTC 5 サーマルダイパドルなしの BTC・ 5 FC-QFN (Flip Chip QFN) 5 LGA(Land Grid Array) 5 BTC のその他の識別名称 5 BTC デバイス製造者による頭字語 6 さまざまな部品構造に関する説明 6 総所有コスト 8 QFN タイプの BTC パッケージに関する、設計および 組立プロセスの懸念事項 創電の要求事項および熱放散 9 電気的性能 10
2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 3.3.1 3.3.2 3.3.3	JEDEC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 3.3.1 3.3.2 3.3.3	JEDEC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 3.3.1 3.3.2 3.3.3 3.3.4	JEDEC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	JEDEC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.5 3 BTC 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	JEDEC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

3.4	検査およびリワーク11
3.4.1	QFN(Quad Flat No-Lead)のはんだ接合部の検査 …11
3.4.2	自動 X 線検査 (AXI)
3.4.3	故障解析
3.4.4	リワークに関する懸念事項12
3.5	ニーズおよび期待12
4 部品	に関する考慮事項
4.1	さまざまな BTC パッケージに関する概要14
4.2	BTC に関する詳細な説明と規格16
4.2.1	Single-Row Molded Lead-Frame-Based Packaging …16
4.2.2	Multiple-Row Molded Lead-Frame-Based Packaging16
4.2.3	Plastic-Quad, Dual-Inline, Square and Rectangular
	No-Lead Packages16
4.2.4	Punch-Singulated Fine Pitch Square Very Thin and
	Ultra-Thin Profile Lead-Frame-Based Quad No-Lead
	Staggered Dual-Row Packages
4.2.5	千鳥配列端子およびインライン複数列端子を持
	つ QFN(Quad No-Lead) パッケージ
4.3	QFN(Quad Flat No-Lead) および SON
	(Small Outline No-Lead)/DFN(Dual Flat No-Lead)
	パッケージに関する詳細説明
4.3.1	製造方法
4.3.2	欠陥の種類30
4.3.3	マーキング手法の選択肢
4.3.4	使用材料32
4.3.5	はんだ付性試験
4.4	カスタム製の QFN(Quad Flat No-Lead) および
	SON (Small Outline No-Lead) / DFN(Dual Flat No-Lead)
	パッケージング
4.5	市販のバリエーションの概要
4.5.1	MLF(Micro Lead Frame)、 MLP(Micro Lead Package)
	および MLFP(and Micro Lead Frame Plastic) 部品に関
	する詳細説明
4.5.2	LLP(Leadless Lead Frame Package) および LFCSP
	(Lead Frame Chip Scale Package)部品に関する
	詳細説明
4.6	LGA(Land Grid Arrays) ·····38
4.6.1	LGA(Land Grid Array)の構造
4.6.2	サブストレートベースによる LGA の製造方法41
4.6.3	欠陥の種類42
4.6.4	LAG(Land Grid Array) パッケージを実装する場合の
	組立の課題42
4.6.5	HDI(High Density Interconnect) プロセス42

5 プリ	ント基板およびその他の取付け構造 44
5.1	高密度相互接続 (HDI) のビルドアップ層44
5.2	基材に関する考慮事項44
5.3	水分の吸収44
5.4	表面仕上げ44
5.4.1	ホットエアソルダレベリング (HASL)46
5.4.2	水溶性プリフラックス (OSP) コーティング46
5.4.3	無電解 Ni/ 置換 Au (ENIG)46
5.4.4	電解 Ni/ 電気 Au めっき (ENEG)46
5.4.5	無電解 Ni/ 無電解 Pd/ 置換 Au (ENEPIG)47
5.4.6	置換 Ag47
5.4.7	置換 Sn47
5.4.8	SSD (solid solder deposition: 固体はんだの供給) …47
5.5	シルクスクリーン
5.6	サイトの平坦度、反りとねじれ
6 プリ	ント基板の設計に関する考慮事項 50
6.1	実装性を考慮した設計における考慮事項50
6.2	BTC のランドパターン設計のプロセス50
6.3	パッケージのバリエーション
6.4	BTC ランドパターンと部品の照合文字コーディング …52
6.5	回路ルーティングの考慮事項 / サーマルビアの
	禁止領域
6.6	物理的設計のための重要な BTC パッケージ要素 …53
6.6.1	終端部(電極端子)の形式
6.7	BTC のランドパターンおよび部品に関する照合
	文字コーディング
6.8	ソルダマスクの設計
6.8.1	オーバーレジストビア
6.8.2	I/O Cu パッドのソルダマスク設計
6.8.3	サーマルパッドのソルダマスクの設計56
6.8.4	外周 I/O の Cu パッドの設計
6.9	HDI に関する考慮事項58
6.10	Cuサーマルパッドの設計
6.10.1	サーマルビアのタイプ・・・・・・59
6.10.2	サーマルパッド設計における主要要素60
6.10.3	サーマルパッドビアの数量と配置62
6.10.4	サーマルビアの標準グリッド62
6.10.5	不適切なビア数64
6.11	サーマルパッドの設計オプション64
6.11.1	SMD(Solder Mask Defined) 方式によるサーマルパッドの設計66
6.11.2	オープン Cu によるサーマルパッド設計69
6.11.3	ビアテンティングによるサーマルパッドの設計73
6.11.4	オーバーレジストビアによるサーマルパッド設計74
6.11.5	VIPPO(Via-in-Pad Plated-Over) によるサーマルパ
	ッド設計
6.11.6	フローティングマスクによるサーマルパッドの設計 …77

6.12	洗浄性を考慮した設計における考慮事項	79
6.13	ステンシル設計の考慮事項	81
6.13.1	サーマルパッドステンシルの設計	81
6.13.2	外周 I/O のステンシル設計	85
6.14	ステンシルアパーチャの減少	85
6.15	BTC を利用して設計する際の重要な考慮事項 …	86
6.15.1	I/O 端子におけるギャングによるソルダマスク開口部	86
6.15.2	ミラーリング配置による QFN(Mirrored Quad Flat	
	No-Leads) 構造 ······	86
6.16	ランダムなビアの配置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	86
7 プリ	ント基板上における BTC の組立	86
7.1	BTC 部品に関する考慮事項	86
7.1.1	部品受入れ時の梱包形式	···87
7.1.2	BTC の感温性	88
7.1.3	BTC の感湿性に関する考慮事項	88
7.1.4	BTC の電極端子の仕上げとはんだ付性	88
7.2	プリント基板に関する考慮事項	89
7.2.1	はんだ接合部のフィレット形成におけるプリント基板	
	設計の影響	89
7.2.2	組立によって誘発される反り	90
7.3	組立材料	90
7.3.1	はんだ合金の取付け方法	90
7.3.2	ソルダペースト・・・・・	90
7.3.3	はんだプリフォーム・・・・・	90
7.3.4	はんだ合金	90
7.3.5	フラックスの化学配合(組成)に関する考慮事項	91
7.3.6	エッジ部 / コーナー部のボンディング材料、アンダ	
	ーフィル剤、接着剤	91
7.4	BTC の洗浄プロセス	91
7.5	はんだの印刷と堆積	92
7.5.1	はんだステンシル印刷に関する考慮事項	92
7.5.2	ジェッティング(ジェット式)とディスペンス	93
7.5.3	BTC 部品のはんだディッピング	94
7.6	ソルダペーストの検査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
7.7	部品の装着	95
7.8	はんだ接合部のリフロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	95
7.8.1	リフロー雰囲気	96
7.8.2	時間と温度のプロファイル	96
7.8.3	各プリント基板組立の固有のプロファイル	97
7.8.4	フラックスの活性化における材料の影響、部品の	
	損傷およびはんだ付性	97
7.9	BTC の熱プロファイリング	98
7.10	BTC の工程管理およびモニタリングポイント	99
7.11	生産レベルの検査	99
7.11.1	自動ソルダペースト検査 (SPI)	99
7.11.2	自動光学検査 (AOI)	100
7.11.3	自動 X 線検査 (AXI)	102

7.11.4	オペレータによる目視検査	103
7.12	リワークとリペア	103
7.12.1	ホットエアリワーク	104
7.12.2	代替方法	104
7.12.3	I/Oリードの手はんだによるタッチアップ 1	105
7.13	BTC のコンフォーマルコーティング 1	105
7.14	機械的ヒートシンクの利用	105
7.15	製造レベルでの試験	106
7.15.1	電気試験	106
7.15.2	FT(機能試験)の範囲1	106
7.15.3	バーンイン試験	106
7.15.4	製品スクリーニング試験	106
8 BTC	の信頼性に関する考慮事項	106
8.1	BTC の信頼性に関する概要および基本的	
	な考え方	106
8.1.1	機械的信頼性	107
8.1.2	熱機械的信頼性	107
8.1.3	電気化学的信頼性	107
8.2	BTC の信頼性を考慮した設計 - 熱機械的負荷 … 1	108
8.2.1	プリント基板設計の考慮事項	108
8.2.2	プリント基板の厚さ	108
8.2.3	ウェッタブルサイドフランクの信頼性における影響… 1	108
8.2.4	ランドのサイズとピッチ	109
8.2.5	BTC パッケージのスタンドオフ	109
8.2.6	補強による利点	110
8.2.7	モールドコンパウンドの材料	110
8.2.8	ダイサイズ	110
8.2.9	はんだ接合部の微細構造の脆化 1	110
8.3	BTC の信頼性を考慮した設計 - 電気的および熱的	
	な負荷	110
8.3.1	サーマルパッド内のボイド	110
8.4	信賴性試驗	111
8.4.1	内視鏡検査による、組立品のタイムゼロ分析 1	111
8.4.2	熱機械的信頼性加速寿命試験	112
8.4.3	恒温恒湿下での信頼性加速寿命試験 1	113
9 7		113
9.1	祖立わよい衆道に関する問題」	113
9.1.1	フリント基板供給者によるフルタマスクの変更]	113
9.1.2	SMI ATシンルの変更] SMT フテンパル印刷の単井七汁	114
9.1.5	SWII ヘノマンル印刷の代替力は	114
9.1.4	y - < /レハットリノルイト 完生 ···································	114
9.1.5	10 ハットの小小ト先生	114
9.1.0	DTC 細立のトラブルシューテ ハンガ	114
9.2	BIC 加立 ジアノノルシューノインク	115
9.2.1		115
1.2.2	1 21/21/21/21/21/21/21/21/21/21/21/21/21/2	113

附属書	A 索引:	頭字語および略語	118
		义	
図 1-1	さまざまな	形状の BTC	1
図 3-1	不規則な	はんだ電極部を示す FC-OFN	
	(Flip Chin	OFN)	5
図 3-2	サーマル	パッドのない BTC パッケージ(上面図	
	お上び下す		6
図 3-3	シングル	(単一の)サーマルパッドで構成された	0
200	OFN デバ	イスの例(上面図お上び下面図)	7
図 3-4	マルチ(オ	復数の)サーマルパッドで構成された設計	,
20 J	の例		7
図 3-5	ダイシンク	で個片化した BTC パッケージ	8
⊠ 3-6	パッケーシ	ジョンの比較	8
図 3-0 図 3-7	ビアを配置	- テレッル4X 署] た単一のサーマルパッドの場合の	0
Z 5-1	プルント其	板のランドパターンの例	10
¥ 3.8	サーマル	パッドが複数(マルチサーマルパッド)の	10
凶 5-0	担合の	プリント 其板のランドパターンの例	11
20	物口の、	PTC の雪極端ユレウェッタブルサイドフラ	11
凶 5-9	いたちす	BIC の電極端」 Cyエンテノル yill y y	11
図210	ノンを有り	る BIC の 电極端 丁の 比較	
凶 5-10	ハノツノム	シアを肥した QFN(Quad Flat No-Lead)	
₩ 2 11	Ny)-:		12
凶 3-11	SII めつき	されにヘノッノ カットを持って、QFN	
₩ 2.1 0	(Quad Fla	1 No-Lead) リートノレーム	12
区 3-12	ユノタクト(クト国にエッテンクされた凹状のくはみ ・	13
凶 3-13	ワエツタノ	ルノフンクの電極端十部の断面・機械的	
	フレルツト	ノロセス(\pounds)とデインノル形成による//ミ	12
<u>₩</u> 0.14	カルエッフ		13
図 3-14	一般的な	ヒンの改造例の頭偸頭画像	13
図 3-15	DFN ハッ	クーンの透視図	14
図 3-16	DFN ハッ	ケーンのサイドワェッタフルノフンクの	
	詳細図…		14
图 4-1	BTC 部品	のさまさまな形状	15
图 4-2	個斤化し7	たLGA(Land Grid Array) (アバイスの	
	下面)…		15
凶 4-3	Basic Sing	gle-Row Lead-Frame-Based Small Outline	
	No-Lead (SON)-Quad Flat No-Lead (QFN)	
—	Package A	Assembly Model	16
凶 4-4	Basic Mul	Itiple-Row Quad Flat No-Lead (QFN)	
	Package A	Assembly Model	16
凶 4-5	単列の SC	ON(Small Outline No-Lead) および QFN	
	(Quad Fla	t No-Lead) Packaging の端子構成	16
凶 4-6	JEDEC 定	『義によるパッケージングの外形:	
	単列の SC	ON(Small Outline No-Lead) と QFN	
_	(Quad-Fla	tt No-Lead) Packaging ······	…17
凶 4-7	単列の SC	ON(Single-Row Small Outline No-Lead)	
	および QI	FN(Quad Flat No-Lead) Packaging	
	における、	端子設計のバリエーション	…18

IPC 7093A JP

図 4-8	端子コンタクトのレイアウト
図 4-9	単列の QFN(Quad Flat No-Lead) パッケージングに
	関する非実装スキーム
図 4-10	コーナー部の端子と露出したヒートスプレッダ19
凶 4-11	メタライズ電極
凶 4-12	Fine-Pitch Two-Row Quad Flat No-Lead
N 4 1 2	(QFN) Packaging 20
凶 4-13	Quad Flat No-Lead (QFN) Dual-Row Package
V 4 1 4	(上面図わよび側面図)
凶 4-14	外側および内側に配列された端子のレイアリトハリ
N 4 15	エーション 22 増えず 2 別の担合のレイアウト 22
区 4-13	端丁が2列の場合のレイノクト 22 雪山1たダイ壮美パッドの小手機能 22
区 4-10	路山したクイ表有ハットのノッノ (成化
凶 4-17	Sm 丁 配クリル ³ 2 クリまたには 5 クリックQFN
2 1 10	他子配列が2別の提合の基本的なレイアウトバリェ
凶 4-10	
図 4 10	ーション 24 一世子記の地名の基本的なレイアウトバリア
[즈] 4-19	
図 4 20	マコマ 24
区 4-20	本的なOEN(Ouad Flat No Lead) パッケージの
A 4-21	本本市ない、GIN(Quad Hat No-Lead)、ワケークの
叉 4-22	ピン1の配置オプション
図 4-22	さまざまた BTC パッケージ
図 4-24	OFN に用いられる。NiPdAu 仕上げの一般的
<u>م</u> 121	なダイ装着側リードフレーム
図 4-25	リードフレーム上にテープが施された、OFN (Ouad Flat
	No-Lead) パネルの一般的なはんだパッド側27
図 4-26	ダイシングで個片化する場合の OFN(Ouad Flat
	No-Lead) 製造 ···································
図 4-27	モールド成形(オーバーモールド)したリードフレー
	ム構成
図 4-28	打ち抜きで個片化する QFN(Quad Flat No-Lead) の
	製造
図 4-29	ワイヤーボンドをオプションとする場合の、金型打ち
	抜きタイプとダイシングタイプによるパッケージの
	比較
図 4-30	ハーフエッチングのプルバックコンタクトとフルエ
	ッチングのプルバックなしの外周コンタクトの
	構成の例30
図 4-31	めっき層の構造の比較32
図 4-32	カスタム製の QFN サイトの詳細画像33
図 4-33	28 の I/O を持つ MLF(Micro Lead Frame) パッケ
	ージの例
図 4-34	MLP(Micro Lead Package) ······33
図 4-35	MLFP(Micro Lead Frame Plastic) パッケージ34
図 4-36	JEDEC MO-220 パッケージの外形34
図 4-37	QFN のコンタクトの設計35

2020	年	10	月
------	---	----	---

図 4-38	LFCSP(Lead Frame Chip Scale Package)
図 4-39	LLP(Leadless Lead Frame Package)
図 4-40	一般的な LLP(Leadless Lead Frame Package) お
	よび LFCSP(Lead Frame Chip Scale Package)の外形
	の詳細
図 4-41	LGA(Land Grid Array) パッケージの例38
図 4-42	エアキャビティおよびモールド成形 (オーバーモ
	ールド)による LGA(Land Grid Array)の構造39
図 4-43	BGA(Ball Grid Array)のプロセスフローの例39
図 4-44	サンプルモールド LGA(Land Grid Array) のプ
	ロセスフロー
図 4-45	サンプルエアキャビティLGA(Land Grid Array)のプ
	ロセスフロー
図 4-46	LGA(Land Grid Array) プリント基板の上面 (プ
	ライマリーサイド)図
図 4-47	LGA(Land Grid Array) プリント基板の下面 (セ
	カンダリーサイド)図
図 5-1	HASLでコーティングされたリードの断面
	(非平坦)
図 5-2	不均一な HASL 仕上げのパッド(左)、および
	HASLコーティングのバリエーションを示す座標
	測定器 (CMM) による画像 (右) ······46
図 5-3	SSD (solid solder deposition) による基本製造
	ステップ
図 5-4	SSD のプロセスステップ
図 5-5	ソルダマスク上にあるシルクスクリーンの厚さ測定 …49
図 6-1	BTC(Bottom Termination Components) O QFN
	(Quad-Flat No-Lead)/SON(Small-Outline No-Lead)
	パッケージ群
図 6-2	BTC 用プリント基板のランドパターンの寸法52
図 6-3	プルバック構成(左)とブルバックなしの構成
	(右)の比較
図 6-4	QFN(Quad Flat No-Lead) パッケージ上のプルバッ
	クリードの顕微鏡画像:下面(左)および傾斜
	視野(右)
図 6-5	プルバックのリードの顕微鏡画像(断面画像)53
図 6-6	クリアランスレジストビアとオーバーレジストビアの
	ランドの比較
図 6-7	オプションによるソルダマスクのバリエーションの
	比較
図 6-8	NSMD 方式による I/O 設計の例
図 6-9	個別およびギャングによる I/O 端子 (ソルダマスク
	ウィンドウ)
図 6-10	ギャングによる I/O 端子とソルダマスクの開口部
	(ウィンドウ)55
図 6-11	QFN デバイスへの表面の電源 / グラウンドのフラ
	ッディング

図 6-12	プリント基板供給者によって除去されたソルダ
	マスクウェブ・・・・・56
図 6-13	SMD(Solder Mask Defined) (左) と NSMD
	(Non-Solder Mask Defined)(右)による、露出
	したパッドのはんだ付設計のオプション56
図 6-14	ソルダマスクウェブで個別化された、露出したパッドの
	はんだ付領域
図 6-15	パッケージ本体のエッジ部を超える、球状のはんだ
	接合部の形成(左)とピンの突き出し(右)57
図 6-16	パッケージピンよりも大きいパッド(左)、パッケー
	ジ本体のエッジ部からプルバックされたピン(右) …57
図 6-17	凹状のはんだ接合部の形成 (左)、パッケージ
	本体のエッジ部を超えるピンの突き出し(右)57
図 6-18	パッケージピンと同サイズのパッド(左)、パッケー
	ジ本体のエッジ部からプルバックされたピン(右) …57
図 6-19	レーザーによるビア生成を活用した、HDI の
	ビルドアップの可能性58
図 6-20	エッチングと機械的プロセスを活用した、HDIの
	ビルドアップの可能性59
図 6-21	平坦化およびキャッピングによるビアプロテクション
	の例60
図 6-22	ビアプロテクションの工法61
図 6-23	サーマルビアとサーマルパドルを示す Cu サーマ
	ルパッドの設計
図 6-24	所定のビア密度を有するビアアレイの平均熱抵抗 …62
図 6-25	直角形のアレイ構造(左)、六角形のアレイ構造
	(右)63
図 6-26	ランダムに配置したサーマルビアの例 - 推奨さ
	れない
図 6-27	ビア数量が不適切な場合の例64
図 6-28	プリント基板のサーマルパッドを用いた熱伝達64
図 6-29	BTC サーマルパッドの設計オプション65
図 6-30	ソルダマスクの設計 (SMD 方式)66
図 6-31	一般的な SMD(Solder Mask Defined) によるレ
	イアウト:ビア数が9未満の場合68
図 6-32	一般的な SMD(Solder Mask Defined) によるレ
	イアウト:ビア数9を組み込んだ場合68
図 6-33	複雑な SMD(Solder Mask Defined) によるレ
	イアウト:ビア数が5~31以上の場合68
図 6-34	マルチサーマルパッドで構成された設計の例68
図 6-35	オープンサーマルスルーホールビア構造70
図 6-36	QFN(Quad Flat No-Lead) サーマルパッド
	下に発生したはんだ突起
図 6-37	はんだ付された領域とビア充填のグラフ71
図 6-38	公称はんだ量が Vmax に設定されている場合の、
	充填ビアにおけるプロセス変動(青色のガウス曲線)
	の結果

図 6-39	QFN(Quad Flat No-Lead) ランドの顕微鏡画像:
	オープン Cu によるサーマルパッドの設計 (左)、
	はんだ印刷ウィンドウパターン(中央)、リフロー後
	のX線画像(右)
図 6-40	オープン Cu によるビア設計: ソルダマスクがない
	場合(左)、ソルダマスクが基板下面に侵入する場合
	(オーバーレジスト)(右)
図 6-41	上面をソルダマスクでビアテンティングした設計73
図 6-42	VIPPO(Via-in-Pad Plated-Over) によるサーマル
	パッドの概略図と断面画像
図 6-43	VIPPO(Via-in-Pad Plated-Over) によるパッドの例76
図 6-44	フローティングソルダマスクによるビア設計の場合
	の断面図と平面図 (上面図)
図 6-45	単一 (独立した) のマスク位置 vs. 接続されたマ
	スク位置
図 6-46	フローティングソルダマスク設計の実施例78
図 6-47	単一のバルクアパーチャで印刷された Cu 領域
	(左)、および複数のアパーチャで印刷された Cu
	領域(右)81
図 6-48	単一のバルクアパーチャを使用した場合のボイド
	発生レベル(左)、およびストライプアパーチャを
	使用した場合のボイド発生レベル(右)82
図 6-49	大型ボディ(上)と小型ボディ(下)のパッケージサ
	イズに基づいて最適化された、ストライプおよびバ
	ルクサーマルパッドステンシルアパーチャの設計83
図 6-50	サーマルパッド基準による被覆率の例84
図 6-51	はんだアパーチャ基準による被覆率85
図 6-52	1:1のステンシルアパーチャの減少85
図 6-53	ミラーリングによる QFN(Quad Flat No-Lead) 構造
	の例86
図 7-1	JEDEC のトレーキャリアーの形式87
図 7-2	感温性部品 (TSC) のリスクを高めるプロセスウィ
	ンドウの上昇88
図 7-3	プローブマークが原因による表面欠陥89
図 7-4	プルバックおよびプルバックなしの BTC 構成
	における、はんだ接合部形成の結果: 良い例
	(左)と悪い例(右)89
図 7-5	張り出しパッドのある BTC90
図 7-6	テープリールの形式に収められたはんだプリ
	フォーム
図 7-7	フラックス残さの閉じ込めが懸念される領域91
図 7-8	デュアルロー QFN 下のフラックス残さの堆積91
図 7-9	一般的に使用されるステンシル厚さの推奨ア
	パーチャ寸法
図 7-10	はんだディッピングをした場合としない場合の
	BTC の比較、および結果として生じるはんだの
	ない状態

IPC 7093A JP

図 7-11	ランドからの位置ずれにおける最大許容値の
	評価(リフロー前)95
図 7-12	メタル定義によるランドのはんだ接合部96
図 7-13	SnPb はんだのリフロープロファイル97
図 7-14	SAC 合金はんだのリフロープロファイル98
図 7-15	プロファイル検証のための、BTC サーマルパッドの
	熱電対の位置(赤色のマーカー)98
図 7-16	QFN(Quad Flat No-Lead) のソルダペースト検査
	画像の例99
図 7-17	MLF パッケージの顕微鏡画像: ぬれを示す例
	(上段、左)、ぬれを示さない例(上段、右) 100
図 7-18	ぬれ高さの影響
図 7-19	AOIを使用した、良性のぬれを示すピンと不良性
	のぬれを示すピン(サイドフランク)の検出 101
図 7-20	ウェッタブルフランクのある QFN(Quad Flat
	No-Lead) 102
図 7-21	ウェッタブルフランクのある QFN(Quad Flat
	No-Lead)の断面
図 7-22	さまざまな技法を用いてはんだの欠落を検出
	するX線の画像103
図 7-23	組立後の自動 X 線検査 (AXI)を使用した BTC
	の X 線画像の例 103
図 7-24	ステンシルを用いたはんだバンプ方法 104
図 8-1	1,000 サイクル後に、熱膨張係数 (CTE) の不一致か
	ら I/O BTC はんだ接合部に発生したはんだの亀裂… 107
図 8-2	より薄い基板の場合に、疲労寿命がより長くなるこ
	とを示すワイブルプロット・・・・・・・・・・・・・・・・・・・・・・・・108
図 8-3	7-mm の BTC パッケージの疲労寿命におけるラン
	ドサイズの影響
図 8-4	追加めっきバンプによるオプション 109
図 8-5	BTC の疲労寿命におけるスタンドオフ高さの
	影響
図 8-6	露出したパッドのはんだ接合部による熱伝達
	A - 部品 ······ 110
図 8-7	全体的な Rth における、露出したパッド内のボイド
<u> </u>	の影響の計算 ·························111
凶 8-8	サーマルバッドの許容可能なホイド発生レベル
	() 断面積で<30%)
图 9-1	フリント基板製造者によって除去されたソルタマス
图 9-2	すべてのCuハットの形状とはんた供給か1.1
N 0 0	
凶 9-3	オーテンCUのサーマルハット上にセノフ印刷を ちした回
204	旭しに町 114 PTC のオープンジョイントの断示 115
凶 9-4 図 0 5	DIC シノイ ノマンコイン「シリ肉山
凶 9-3	四回てのA 一ノン(子具工))わよいタイとノル (写直下側)
	(ナ県工則) 115

図 9-6	LGA パッケージ上のはんだ付されていないランド…	115

2020年10月

図 9-7	QFN 上のノンウェットジョイント	116
図 9-8	QFNの接合部におけるはんだ不足	116
図 9-9	BTC の傾きが原因によるオープン	117
図 9-10	サイドフィレットの欠落・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	117
図 9-11	BTC I/O はんだ接合部のマイクロボイド	117

表

表 3-1	一般的な BTC 識別一覧 (例) 5
表 3-2	BTC の総所有コスト ····· 9
表 4-1	市販の QFN(Quad-Flat No-Lead) および DFN
	(Dual-Flat No-Lead) パッケージの構造15
表 4-2	SON(Small Outline No-Lead) および QFN(Quad
	Flat No-Lead) パッケージの端子幅のバリエー
	ション20
表 4-3	本体外形、および最大端子数
表 4-4	コンタクトの形状
表 4-5	リードフレームパッケージの欠陥および故障モード …31
表 4-6	メタルリードフレームに用いられるめっき系32
表 4-7	QFN の一般的なパッケージ外形と I/O 数35
表 4-8	LLP(Leadless Lead Frame Package) および
	LFCSP(Lead Frame Chip Scale Package) $\mathcal{O} \exists \mathcal{V}$
	タクトピッチと幅のバリエーション
表 4-9	LLP(Leadless Lead Frame Package) および
	LFCSP(Lead Frame Chip Scale Package) デバイス
	の基本的な材料組成要素(元素)37
表 4-10	サブストレートベースによる LGA(Land Grid Array)
	の欠陥と故障モード43
表 5-1	プリント基板のさまざまな表面仕上げに関する主な
	属性45
表 6-1	一般的な BTC 技術の範囲
表 6-2	BTC サーマルパッド設計オプションの長所と短所 …66
表 6-3	SMD(Solder Mask Defined) による設計ポイン
	トパラメータ69
表 6-4	オープン Cu によるサーマルパッドの設計パ
	ラメータ73
表 6-5	ビアテンティングによるサーマルパッドの設計
	パラメータ75
表 6-6	VIPPO(Via-in-Pad Plated-Over) によるパッドの
	設計パラメータ77
表 6-7	フローティングソルダマスクの設計パラメータ79
表 7-1	粒径の比較
表 7-2	一般的なステンシル技術およびオプションの長所
	と短所
表 7-3	BTC の設計および工程管理のポイント99
表 7-4	高品質の BTC 製造を保証するための、生産
	レベルの検査ステージ