

IPC-4552B

Specification for Electroless Nickel/ Immersion Gold (ENIG) Plating for Printed Boards

Developed by the Plating Processes Subcommittee (4-14) of the Fabrication Processes Committee (4-10) of IPC

Supersedes:

IPC-4552A – August 2017 IPC-4552 with Amendments 1 & 2 – December 2012 IPC-4552 – October 2002 Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC

Table of Contents

1 S	COPE1	3.2.1	Shelf Life	16
1.1	Purpose 1	3.2.2	Humidity Indicator Card (HIC)	19
1.2	Description	3.2.3	Aluminum and Copper Wire (Wedge)	
1.3	Classification		Bonding	
1.4	Measurement Units	3.2.4	Contact Surface	
1.5	Definition of Requirements	3.2.5	EMI Shielding	19
1.6	Process Control Requirements 2	3.2.6	Conductive and/or Anisotropic Adhesive Interface (Replacement for Solder)	20
1.7	Order of Precedence	3.2.7	Connectors	
1.7.1	Conflict	3.2.8	Limitations of ENIG	
1.7.2	Clause References	3.3	Visual	
1.7.3	Appendices	3.4	Selective Annular Ring Dewetting (SAD)	
1.8	Use of "Lead"	3.5	Finish Thickness	
1.9	Abbreviations and Acronyms	3.5.1	Electroless Nickel Thickness	
1.10	Terms and Definitions	3.5.2	Immersion Gold Thickness	
1.10.1	Electroless Process			24
1.10.2	Hyperactive Corrosion Deposit	3.5.3	Exceptions to the Required Thickness Ranges	25
1.10.3	Immersion Process	3.6	Nickel Corrosion	
1.10.4	Metal Turnover (MTO)	3.6.1	Morphologies of Features at Electroless	27
	Reduction Assisted Immersion Gold Also	3.0.1	Nickel – Immersion Gold Interfaces	28
	known as: Mixed Reaction Immersion Gold 3	3.6.2	Corrosion Level Definition	30
1.10.6	Selective Annular Ring Dewetting (SAD) 4	3.6.3	Corrosion Level Evaluation of an As-	
2 A	PPLICABLE DOCUMENTS 4	3.0.3	Plated ENIG Deposit by Cross Section	32
2.1	IPC	3.6.4	ENIG Baselining	38
2.2	Joint Standards	3.6.5	ENIG Corrosion Performance Monitoring	38
2.3	ASTM International (ASTM)	3.6.6	Optional Testing to Determine IMC	
2.4	JEDEC 5		Formation on Boards Showing Product Rating 2	39
2.5	Defense Standardization Program 5	3.7	Porosity	
2.6	Telcordia Technologies, Inc	3.8	Adhesion	
2.7	International Electrotechnical	3.9	Solderability	
	Commission (IEC)	3.9.1	Stressing of the Deposit Prior to	41
2.8	International Organization for	3.7.1	Solderability Testing	41
	Standardization (ISO)	3.9.2	Force Measurement Testing (Wetting	
3 R	EQUIREMENTS of ENIG DEPOSIT 6		Balance Testing)	41
3.1	Printed Board Fabrication Supplier Process	3.10	Cleanliness	42
	Requirements	3.11	Electrolytic Corrosion	42
3.1.1	General Plating Line Requirements	3.12	Chemical Resistance	42
3.1.2	ENIG XRF Calibration Standards	4 G	QUALITY ASSURANCE PROVISIONS	42
3.1.3	XRF Zero Offset Acceptability	4.1		
3.1.4	Process Qualification Measurement		General Quality Assurance Provisions	
3.1.5	Requirements	4.1.1	Qualification Recommendations	
	Phosphorus Content	4.1.2	Sample Test Coupons	
3.1.6	Gold Stripping of Plated Deposits for	4.2	Quality Conformance Testing	
	Evaluation of Corrosion Level 16	4.2.1	Thickness	
3.2	Performance Functions	4.2.2	Qualified Process	44

APPENDIX 1	Abbreviations and Acronyms 45	Figure 3-1d	Graphical and Statistical Evaluation of Data from XRF Tool # 3 11
APPENDIX 2	ENIG Process Sequence 47	Figure 3-2	Potassium Iodide/Iodine (KI / I ₂) at 15 sec. dwell (left) vs. 60 sec. dwell (right) 17
APPENDIX 3	XRF Thickness Measurements of Thin Au (ENIG): Recommendations for Instrumentation (Detectors)	Figure 3-3	Cyanide-Based Stripping at 15 sec. dwell (left) vs. 60 sec. dwell (right)
APPENDIX 4	and Their Limitations	Figure 3-4	Cyanide Stripping (left) vs. KI/I ₂ Stripping (right) Using Focused Ion Beam (FIB) 17
AFFENDIA 4	ENIG PWB Surface Finish Wetting Balance Testing50	Figure 3-5	25,000X FIB Images – Cyanide (left) vs. KI / I ₂ (right) – Same Dwell Time
APPENDIX 5	IPC 4-14 SC ENIG Round Robin Solder Spread Testing	Figure 3-6	Ion Mill Stripping of Defect-Free Nickel (left) vs. Hyper-Corroded Nickel (right) 18
APPENDIX 6	Wire Bonding to ENIG74	Figure 3-7	Humidity Indicator Card (HIC) Example 19
	_	Figure 3-8	Uniform Plating
APPENDIX 7	Through Hole Solderability Testing	Figure 3-9	Extraneous Plating or Nickel Foot21
	100ting	Figure 3-10	Skip Plating (No Ni plating)21
APPENDIX 8	Evaluation of Electroless Nickel Corrosion Due to Immersion Gold	Figure 3-11	Edge Pull Back21
	Plating, Using 3000X Magnification After Gold Stripping	Figure 3-12	Example of SAD (Selective Annular Ring Dewetting) 22
APPENDIX 9-	A Cyanide Gold Stripping for	Figure 3-13	Another Example of the SAD Defect 22
AFFEINDIX 9-	ENIG95	Figure 3-14	Selective Annular Ring Dewetting Defect 22
APPENDIX 9-		Figure 3-15	Grain Structure of Conventional Nickel Deposit
	Iodide/ Iodine (Non-Cyanide) ENIG Gold Stripping Procedure 96	Figure 3-16	Grain Structure of Nickel Deposit Modified for Dynamic Flex Applications
APPENDIX 9-	Plating from ENIG Finished	Figure 3-17	Example of Fracture in Conventional Nickel Deposit
	PCBs by Broad Beam Argon Ion Milling98	Figure 3-18	Modified Nickel Deposit Showing No Fracture with Same Number of Cycles 23
APPENDIX 10	and Phosphorus Content In	Figure 3-19	Example of Multiple Spike Defects on the Knee of a Hole at 1000X
	Electroless Nickel (EN) Layers X-Ray Fluorescence (XRF) Spectrometry [IPC-TM-650,	Figure 3-20	Example of an Isolated Spreader Defect at 1000X (Rate as Level 1, if < 40%) 29
ADDENDIV 11	Method 2.3.44] 103	Figure 3-21	Example of Multiple Spreader Defects on the Knee of a Hole at 1000X
APPENDIX 11	Phosphorus Content Measurement in ENIG Using Electron Dispersive Spectroscopy EDS 110	Figure 3-22	Example of Black Band Defect (Jagged in Nature) with Varying Depth of Penetration Type of Corrosion at 1000X29
APPENDIX 12	2 Standard Developments Efforts of Electroless Nickel Immersion Gold	Figure 3-23	Example of Black Band That Would be Rejectable if It Met the Minimum 30% Coverage of the Field of View at 1000X 29
APPENDIX 13	Using Guard Bands or a Gauge Correction Factor to Accommodate	Figure 3-24	Example of a Crack in the Nickel Deposit at 1000X
	Type 1 Gauge Study Measurement Uncertainty	Figure 3-25	Example of Level 0 Corrosion – Knee of Hole at 1000X31
APPENDIX 14	Worked Examples of Hyper- Corrosion Evaluations 139	Figure 3-26	Example of Level 0 Corrosion – SMT Feature at 1000X
	Figures	Figure 3-27	Level 1 Corrosion – SMT Feature at 1000X31
	Example of Repeat Measurement Data from Three Different XRF Tools	Figure 3-28	Level 1 Corrosion – Knee of Hole at 1000X31
	Graphical and Statistical Evaluation of Data from XRF Tool # 1	Figure 3-29	Level 2 Corrosion – Knee of Hole at 1000X
	Graphical and Statistical Evaluation of Data from XRF Tool # 2	Figure 3-30	Level 2 Corrosion – SMT Feature at 1000X

April 2021 IPC-4552B

Figure 3-31	Level 3 Hyperactive Corrosion – Knee of Hole at 1000X	Figure 3-49	Example of Run Chart Created for Recording Product Rating	. 38
Figure 3-32	Level 3 Hyperactive Corrosion – SMT Feature at 1000X32	Figure 3-50	Example of an Acceptable Contiguous IMC Layer at 1000X	. 40
Figure 3-33	Etched Defined PTH33	Figure 3-51	Example of a Rejectable Non-	
Figure 3-34	Solder Mask Defined Features		Contiguous IMC Layer at 1000X	. 40
igure 3-35	Solder Mask Defined SMT Pad	Figure 3-52	Example – Rejectable with Little-to-No IMC Formation at 1000X	40
Figure 3-36	Etched Defined SMT Pad (non-supported PTH are treated as SMT Pad)	Figure 3-53	Example – Rejectable with Little-to-No IMC Formation at Annular Ring for	. 40
igure 3-37	Blank Product Rating Spread Sheet 34		Through Hole with Level 2 Corrosion	
igure 3-38	Example Product Rating for 5		Level at 1000X	. 41
	Different Panels	Figure 3-54	Standard IPC Force Measurement	44
Figure 3-39	Decision Tree Based on Product Rating Evaluation		Coupon	. 41
Figure 3-40	Through Holes to be Evaluated for Corrosion at 25X		Tables	
igure 3-41	Location 1 Worked Example – Rating Is a Level 2 at 1000X	Table 3-1	Requirements of Electroless Nickel/ Immersion Gold Plating	6
Figure 3-42	Location 2 Worked Example –	Table 3-2	Twelve (12) Repeat Au Measurements and the Mean Value	. 13
Figure 3-43	Rating Is a Level 1 at 1000X	Table 3-3	Example of Phosphorus Content Analysis Over a 4-Quarter Period	. 15
	Rating Is a Level 2 at 1000X	Table 3-4	Three Examples of XRF Data Sets	
Figure 3-44	Location 4 Worked Example – Rating Is a Level 0 at 1000X		(µm [µin])	. 24
Figure 3-45		Table 3-5	One More Example of XRF Data (µm [µin])	. 25
igaio o io	LOCATION S WORKED EXAMBLE -		(b [b])	
	Location 5 Worked Example – Rating Is a Level 2 at 1000X	Table 3-6	Identification of Corrosion Level	
Figure 3-46	Rating Is a Level 2 at 1000X	Table 3-6	Identification of Corrosion Level of a Location	. 30
Figure 3-46	Rating Is a Level 2 at 1000X	Table 3-6 Table 3-7	of a Location Product Rating based on Corrosion	
Figure 3-46	Rating Is a Level 2 at 1000X	Table 3-7	of a Location Product Rating based on Corrosion Investigation	. 34
J	Rating Is a Level 2 at 1000X		of a Location Product Rating based on Corrosion	. 34 . 43

April 2021 IPC-4552B

Performance Specification for Electroless Nickel/ Immersion Gold (ENIG) Plating for Printed Boards

1 SCOPE

This performance specification sets requirements for Electroless Nickel/Immersion Gold (ENIG) deposit thicknesses for applications including soldering, wire bonding and as a contact finish. It is intended for use by chemical suppliers, printed board manufacturers, electronics manufacturing services (EMS) and original equipment manufacturers (OEM). This standard may be used to specify acceptance criteria to meet performance requirements in addition to those found in the IPC-6010 series (IPC-6012, IPC-6013 and IPC-6018) of standards. The ENIG deposit specified by using this document will meet the highest coating durability rating as specified in the J-STD-003 printed board solderability specification.

This specification is based on three critical factors:

- 1) The ENIG plating process is in control producing a normal distribution for nickel and gold deposit thickness.
- 2) That the tool used to measure the deposit and therefore control the process is accurate and reproducible for the thickness range specified.
- 3) That the ENIG plating process results in uniform deposit characteristics.

If any of these three critical factors are not met, then the deposit produced will not meet the performance criteria defined herein.

- **1.1 Purpose** This specification sets the requirements specific to ENIG as a surface finish (see Table 3-1 for a summary of these requirements).
- **1.2 Description** ENIG is an electroless nickel layer capped with a thin layer of immersion gold (IAu). It is a multifunctional surface finish, applicable to soldering, aluminum and copper wedge wire bonding, press fit connections, and as a contact surface. The immersion gold layer protects the underlying nickel from oxidation/passivation over its intended life. However, this layer is not impervious and it will not pass the requirements of a "classic" porosity test as defined in ASTM B735 and IPC-TM-650, Methods 2.3.24, 2.3.24.1 and 2.3.24.2.
- **1.3 Classification** IPC standards recognize that electrical and electronic assemblies are subject to classifications by intended end-item use. Three general end-product classes have been established to reflect differences in manufacturability, complexity, functional performance requirements, and verification (inspection/test) frequency. It should be recognized that there may be overlaps of equipment between classes.

CLASS 1 General Electronic Products

Includes products suitable for applications where the major requirement is function of the completed assembly.

CLASS 2 Dedicated Service Electronic Products

Includes products where continued performance and extended life is required, and for which uninterrupted service is desired but not critical. Typically, the end-use environment would not cause failures.

CLASS 3 High Performance/Harsh Environment Electronic Products

Includes products where continued high performance or performance-on-demand is critical, equipment downtime cannot be tolerated, end-use environment may be uncommonly harsh, and the equipment must function when required, such as life support or other critical systems.

- **1.4 Measurement Units** All dimensions and tolerances in this specification are expressed in hard SI (metric) units and bracketed soft imperial [inch] units. Users of this specification are expected to use metric dimensions. All dimensions $\geq 1 \text{ mm} [0.0394 \text{ in}]$ will be expressed in millimeters and inches. All dimensions < 1 mm [0.0394 in] will be expressed in micrometers and microinches.
- **1.5 Definition of Requirements** The words **shall** or **shall not** are used in the text of this document wherever there is a requirement for materials, preparation, process control or acceptance.