目录

1 范围	••••••	1
1.1	范围说明	1
1.1.1	厚度测量的特征尺寸	1
1.2	描述	1
1.2.1	化学镀镍还原剂——磷含量	1
1.3	目标	1
1.3.1	优先顺序	2
1.3.1.1	附录	2
2 适用	文件	2
2.1	IPC ·····	2
2.2	ASTM 国际 (ASTM)	2
2.3	JEDEC	2
2.4	国防标准化项目	2
2.5	Telcordia 公司 ······	3
2.6	国际标准化组织(ISO) ······	3
2.7	术语、定义和缩写	3
2.7.1	金属置换周期 (MTO) ······	3
2.7.2	过腐蚀沉积层	3
2.7.3	选择性孔环退润湿(SAD) ······	3
3 ENIC	G 沉积层要求 ······	4
3.1	印制板制造供应商工艺要求	5
3.1.1	一般镀覆线的要求	5
3.1.1.1	ENIG 沉积层厚度测量	5
3.1.1.2	测量能力 - 规范 R&R (重复性和再现性)	
	1型研究	5
3.1.1.3	准直器尺寸和测量时间	10
3.1.1.4	安全区间和批量符合性测试	10
3.1.2	ENIG 的 XRF 校准标准 ······	10
3.1.3	XRF 零值偏移的可接受性	10
3.1.4	工艺评定测量要求	11
3.1.5	ENIG 沉积层中磷含量的测定 ······	12
3.1.5.1	用能量色散 X 射线光谱仪 (EDS) 测定化学	:
	镀镍 (EN) 层中的磷含量 %	12
3.1.5.2	用能量色散 X 射线荧光 (EDXRF) 测量	
	化镍层 (EN) 的磷含量 %	13
3.1.5.2.1	磷含量检测仪器校准	13
3.1.6	镀金层剥金评价过腐蚀	13

3.1.6.1.1	化学剥离方法的停留时间和工艺步骤 …	14
3.1.6.1.2	使用 SEM 评估	14
3.1.6.1.3	晶界增强与过腐蚀	14
3.1.6.1.4	过腐蚀的验证	14
3.1.6.1	获认可的剥金方法	14
3.2.1.1	可焊性	16
3.2.1.2	金脆	16
3.2	性能功能	16
3.2.1	保存期限	16
3.2.2.1	金线键合	17
3.2.2	铝线和铜线(楔形)键合	17
3.2.3.1	软薄膜开关	17
3.2.3.2	金属球接触	17
3.2.3	接触表面	17
3.2.4	电磁干扰屏蔽	17
3.2.5	导体和 / 或各向异性粘合剂界面	
	(代替焊料)	17
3.2.6	连接器	17
3.2.6.1	压配接器	17
3.2.6.2	边缘键	17
3.2.7	化学镀镍 / 浸金(ENIG)的局限性	18
3.2.7.1	蠕变腐蚀/耐化学腐蚀	18
3.2.7.2	高频信号损耗	18
3.3	外观检查	18
3.4	选择性孔环退润湿(SAD) ·······	19
3.5	表面处理层厚度	20
3.5.1	化学镀镍层厚度	20
3.5.1.1	刚性印制电路板的化学镀镍层厚度	20
3.5.1.2	沉积层超过上限	20
3.5.1.3	沉积层低于最小厚度限值	20
3.5.1.4	挠性电路板的化学镀镍层	20
3.5.1.5	挠性电路板化学镀镍基体结构的改进 …	20
3.5.2	浸金层厚度	21
3.5.2.1	化学镀镍 / 浸金(ENIG)-J-STD-003 中	
	B 组涂覆层耐久性	21
3.5.3	要求以外的厚度范围	23
3.5.3.1	设计超出规范厚度的浸金层	23
3.5.3.2	产品一致性测试	23
3.5.3.3	其它产品测量	23

3.5.3.4	统计过程控制	23
3.5.3.5	十张或更少印制板的批量	23
3.5.3.6	生产过剩和 / 或库存	24
3.5.3.7	ENIG 的返工 / 维修	24
3.6	镍层过腐蚀	24
3.6.1	通过截面切片评估 ENIG 镀层	24
3.6.1.1.1	无过腐蚀缺陷的正常 ENIG	25
3.6.1.1.2	有一些过腐蚀迹象的可接受条件	25
3.6.1.1.3	终端用户签发 / 接收的可接受条件	25
3.6.1.1.4	拒收条件	26
3.6.1.2	过腐蚀分级表	26
3.6.2	额外的非失效分析测试以确认等级 2	
	过腐蚀可接受或拒绝	27
3.7	孔隙率	28
3.8	粘附力	28
3.9	可焊性	29
3.9.1	可焊性测试前镀层的应力	29
3.9.2	润湿力测试(润湿称量测试)	29
3.10	清洁度	29
3.11	电解腐蚀	29
3.12	耐化学性	29
4 质量	保证条款	30
4.1	质量保证条款通用要求	30
4.1.1	质量鉴定建议	30
4.1.2	测试板制作	30
4.2	质量一致性测试	30
4.2.1	厚度测量频次	30
4.2.2	已建立的合格制程	30
附录 1	IPC-T-50 未出现的术语和定义	33
附录 2	ENIG 工艺流程	34
附录 3	薄金的 XRF 厚度测量(ENIG):对使用仪	器
	(探测器)的建议及其局限性	35
附录 4	PWB ENIG 表面镀层的润湿称量测试 …	37
附录 5	IPC 4-14 SC 化学镀镍 / 浸金(ENIG)	
	焊料铺展循环测试	55
附录 6	ENIG 的键合 ······	61
附录 7	通孔可焊件测试	62
1.11.616 1		04

附录 8 剥金后以 3000 倍放大倍数评价由浸金镀层
带来的化镍层腐蚀 77
附录 9-A ENIG 的氰化剥金方法 82
附录 9-B 碘化钾 / 碘(非氰化物)测试方法
的 ENIG 剥金程序 83
附录 9-C 以宽束氩离子研磨的方法剥离印
制板上 ENIG 表面处理的金镀层 85
附录 10 化学镀镍层厚度和磷含量的 X 射线荧光光
谱法测定 [IPC-TM-650 方法 2.3.44] ··· 90
附录 11 利用能谱仪(EDS)测量 ENIG 中的磷含量
——初始测试
附录 12 化学镍金标准的发展成就 102
附录 13 利用安全区间或者测量修正因子以适应
第1类型测量不确定度 121

图片

图 A	3 种不同的 XRF 工具重复测量数据
	的例子 6
图 B	1# XRF 工具数据的图形和统计评估 7
图 C	2#XRF工具数据的图形和统计评估 8
图 D	3#XRF工具数据的图形和统计评估 9
图 3-1	碘化钾 / 碘(KI / I2)溶液停留 15 秒
	(左图)及停留 60 秒 (右图) 14
图 3-2	氰化物溶液停留 15 秒(左图)及停留 60 秒
	(右图)15
图 3-3	氰化物溶液剥离(左图)与KI/I2溶液剥离
	(右图)使用聚焦离子束(FIB) 15
图 3-4	25000 倍下的 FIB 图像 - 氰化物剥金
	(左图)与KI/I2(右图)15
图 3-5	离子研磨方法 - 无缺陷镍层(左图)与
	过腐蚀镍层 (右图) 16
图 3-6	均匀镀层18
图 3-7	渗镀或镍脚
图 3-8	漏镀 (无镍镀层)
图 3-9	边缘回镀
图 3-10	SAD 例子 (选择性孔环退润湿) 20
图 3-11	SAD 缺陷的另一个例子
图 3-12	选择性孔环退润湿缺陷
图 3-13	常规镍沉积层的晶粒结构

图 3-14	动态挠性应用的改性镍沉积层的晶粒结构 … 21
图 3-15	常规镍沉积层的断裂例子
图 3-16	相同周期后改性镍沉积层未见断裂 21
图 3-17	孔拐角 - 无缺陷的 ENIG 镀层图 25
图 3-18	SMT 图形的无缺陷 ENIG 镀层 25
图 3-19	SMT 图形等级 1 过腐蚀图
图 3-20	孔拐角等级 1 过腐蚀
图 3-21	孔拐角位置等级 2 过腐蚀 ······ 25
图 3-22	SMT 图形等级 2 过腐蚀
图 3-23	孔拐角位置等级 3 过腐蚀 ······ 26
图 3-24	SMT 图形等级 3 过腐蚀
图 3-25	镍层开裂例子 26
图 3-26	协助确立过腐蚀等级的决策树 27
图 3-27	案例一可接受的连续 IMC 层 1000 倍 … 28
图 3-28	案例一拒收的非连续 IMC 层 1000 倍 … 28
图 3-29	案例一拒收的很少或没有 IMC 形成
	1000 倍
图 3-30	案例—2级过腐蚀下,通孔孔环很少或
	没有 IMC 形成 1000 倍 ······ 28
图 3-31	标准 IPC 润湿力测试附连板
图 A4-1	润湿称量附连板示例(用于 ENIG
	的测试) 38
图 A4-2	所有供应商的1µin样品的箱线图 ······· 39
图 A4-3	所有供应商的 1.5 µ in 样品的箱线图 ······ 39
图 A4-4	所有供应商的 2.0 µ in 样品的箱线图 ······ 40
图 A4-5	用于该测试的 Metronelec ST88 润湿称量
	测试设备 40
图 A4-6	从"接收态"4# 样本组测试润湿优秀且
	一致的例子,使用 SAC305 和 2# 助焊剂
	(这是一个浸金厚度 1.6µin 在 -4σ 水平
	的样品) 41
图 A4-7	从"接收态"Intra 组中 8# 样本的测试
	润湿曲线,再次显示出润湿优秀和一致性
	(这是其中一个控制厚度的样品) 41
图 A4-8	在样本组 11 中出现了一些润湿非常不一致
	的例子,样品如"接收态"没有应力(这个
	小组后来被确认有镀覆问题,并且在本规范
	修订时不再进一步考虑) 42
图 A4-9	使用 SnPb 再流曲线 2 次再流后, SnPb
	焊料试验(良好的稳健性) 42
图 A4-10	使用温度更高的的无铅再流曲线 2 次再

流后,	SnPb 焊料试验	(失效)	43
$\nu_{\rm IL}/\mu$,	DIII U /T/T/ MUS		45

IPC-4552A CN

图 A4-11	在 72℃ /85%RH 暴露 8 小时后(优秀的	
	稳健性)	43
图 A4-12	在 SnPb 再流曲线下暴露 2 次然后用	
	SnPb 焊料进行测试(优秀的稳健性) …	44
图 A4-13	在无铅再流曲线下暴露 2 次并用 SnPb	
	焊料进行测试(显示数据有一些离散但	
	总体而言与图 A4-7 中所见的失效相比,	
	其稳健性良好)	44
图 A4-14	在 72℃ / 85%RH 暴露 8 小时后(优秀的	
	稳健性)	45
图 A4-15	另一个样本组使用 SnPb 再流曲线 2 次	
	暴露后,用 SnPb 焊料进行测试(较慢的	
	上升速率表明有一些要被还原的氧化物层	,
	具有良好的稳健性)	45
图 A4-16	无铅再流曲线 2 次暴露后(良好的	
	稳健性)	46
图 A4-17	在 72℃ / 85%RH 暴露 8 小时后(优秀的	
	稳健性)	46
图 A4-18	使用 SnPb 再流曲线 2 次暴露后(良好的	
	润湿时间,数据分散性增加)	47
图 A4-19	使用无铅再流曲线进行 2 次暴露后	
	(数据分散性增加并且有一些失效)	47
图 A4-20	在 72℃ / 85%RH 暴露 8 小时后(优秀	
	的稳健性)	48
图 A4-21	使用 SnPb 再流曲线 2 次暴露后(优秀的	
TEL 1 A A A		48
图 A4-22	使用尤铅再流曲线 2 次泰蕗后(有一个	40
歴 4 4 9 2	例外,忌体米说是优秀的稳健性)	49
图 A4-23	在 /2 C / 85%RH 泰路 8 小时 后 (兀 斧 的	40
团 4 4 2 4		49
含 A4-24	使用 SnPb 再加曲线 2 沃泰路后,木用 早一众供应商 (优秀的语碑姓)	50
团 1 4 25	力一个快应问(优秀的稳健性)	50
国 A4-23	[C用九田丹抓回线 2 (沃泰路后,木用 呈一个供应商 (优 委的 趋健性)	50
図 1.1_26	在 72℃ / 85% PH 暴露 8 小时后 (润湿	50
A4-20	时间有所增加 但总体来说是优秀的	
	趋健性)·····	51
图 A4-27	使用 SnPb 再流曲线 2 次暴霰后,采田	51
	另一个供应商(优秀的稳健性)	51
图 A4-28	使用无铅再流曲线2次暴露后,采用	~ 1
, 20	另一个供应商(优秀的稳健性)	52
	2 · · · · · · · · · · · · · · · · · · ·	

图 A4-29	在 72℃ / 85%RH 暴露 8 小时后(优秀的		图 A7-7	当样本经历 2 次再流焊 +8 小时 72℃ /85%
	稳健性)	52		RH 老化对于孔填充缺陷的影响。
图 A4-30	使用 SnPb 再流曲线 2 次暴露后,采用		图 A7-8	采用 SnPb 焊料,未受应力老化的同一
	另一个供应商(提高了上升速率,总体			测试样本同一排的单个附连板孔内完全
	来说是优秀的稳健性)	53		填充和内层互连水平示例。
图 A4-31	使用无铅再流曲线进行2次暴露后,采用		图 A7-9	采用 SnPb 焊料, 经历 2 次 SnPb 再流
	另一个供应商(提高了上升速率,总体			焊应力老化对于孔内填充影响的示例。
	来说是又是优秀的稳健性)	53		I-Au 厚度为 1.74µm
图 A4-32	在 72℃ / 85%RH 暴露 8 小时后(数据分散	攵	图 A7-10	采用 SnPb 焊料, 2 次 SnPb 再流焊
	性增加,但总体来说是优秀的稳健性)…	54		+8 小时 72℃ /85%RH 应力老化影响示例,
图 A5-1	IPC 采用的焊料铺展测试板 ······	56		I Au 厚度为 2.96 µm
图 A5-2	采用 IPC 焊料铺展样片进行焊料铺展		图 A7-11	采用 SAC305 焊料,未受应力样本,
	测量的示意图	56		孔内填充缺陷直观图
图 A5-3	4种化学镀镍/浸金(ENIG)供应商采用		图 A7-12	采用 SAC305 焊料, 2 次再流焊后的应力
	无铅 SAC 锡膏的 PCB 焊料铺展 - 金厚图	57		老化对于样本的影响
图 A5-4	本研究中化学镀镍 / 浸金(ENIG)表面		图 A7-13	样本经历2次再流焊+8小时72℃、
	处理 PCB 的焊料铺展影响参数的交互作用]		85%RH对于孔内填充缺陷的影响
	和回归分析	58	图 A7-14	采用 SAC305 焊料测试, 2 次无铅再流焊
图 A5-5	OSP 板焊料铺展点的背散射式 SEM 图像,			的应力影响示例; IAu 厚度为 1.77 μm ···
	焊料铺展值为21%。该焊点可见清晰而		图 A7-15	采用 SAC305 焊料测试, 经受 2 次无铅
	明显的 CuSn 金属间化合物层 ·······	58		再流焊 +8 小时 72℃ /85%RH 应力影响
图 A5-6	采用无铅 SAC 焊料 8 小时 72℃ /85%RH			示例。I Au 厚度为 2.37 µm。 7
	暴露后的焊料铺展附连板	59	图 A7-16	孔内填充缺陷用于预测作用的总结图。
图 A5-7	采用无铅 SAC 锡膏(左)和 SnPb 共晶		图 A8-1	SEM / EDS / FIB 设备照片 ····································
	锡膏(右)的所有板 [4家化学镀镍/		图 A8-2	样品 VI (3000X)
	浸金(ENIG)供应商]在DOE中一排		图 A8-3	碘化钾 / 碘剥金的 EDAX 谱图
	最大的焊料点数。红色区域的数据表明		图 A8-4	FIB-SEM 截面 10,000 倍
	几乎无铺展,并且可能会在检查中表现		图 A8-5	样本 VI, 3000 倍 ······
	为退润湿。退润湿为黄色区域中需要		图 A8-6	氰化物剥金的 EDAX 谱图
	关注的问题。	59	图 A8-7	氰化物剥金的 EDAX 谱图
图 A5F-1	处理流程图	56	图 A8-8	FIB-SEM 截面(10,000 倍) ······
图 A7-1	一种独立20孔附连板的测试板示例,		图 A8-9	样本 VI, 10,000 倍 ······
	展示各种程度的孔填充。	63	图 A8-10	样本 VI, 10,000 倍 ······
图 A7-2	附连板内部结构示例,适用于内层铜重量		图 A9-C-A	宽束氩离子研磨
	和内部互连方法——本图为 J1 附连板。	63	图 A9-C-1	离子研磨前 ENIG 表面处理的表面 SEM 图
图 A7-3	30 块测试板的 XRF 测量基准点及每块			(背散射)。
	样本的应力老化方式。	64	图 A9-C-2	经30秒离子研磨ENIG表面的SEM图
图 A7-4	Adtran 用于处理测试板的波峰焊参数。	65		(背散射)。一些金明显残留表明样品
图 A7-5	采用共晶 SnPb 焊料测试未受应力样本的			仍需进一步研磨。
	孔填充评估。	65	图 A9-C-3	经一分钟离子研磨 ENIG 表面的 SEM 图
图 A7-6	采用共晶 SnPb 焊料 2 次再流焊测试老化			(背散射)。结瘤形貌完整且无金残留表明
	对样本的影响。	66		样品已研磨适当。

	RH 老化对于孔填充缺陷的影响。	67
图 A7-8	采用 SnPb 焊料,未受应力老化的同一	
	测试样本同一排的单个附连板孔内完全	
	填充和内层互连水平示例。	68
图 A7-9	采用 SnPb 焊料, 经历 2 次 SnPb 再流	
	焊应力老化对于孔内填充影响的示例。	
	I-Au 厚度为 1.74µm	69
图 A7-10	采用 SnPb 焊料, 2 次 SnPb 再流焊	
	+8小时 72℃ /85%RH 应力老化影响示例,	
	I Au 厚度为 2.96 μm ······	70
图 A7-11	采用 SAC305 焊料,未受应力样本,	
	孔内填充缺陷直观图	71
图 A7-12	采用 SAC305 焊料, 2 次再流焊后的应力	
	老化对于样本的影响	72
图 A7-13	样本经历2次再流焊+8小时72℃、	
	85%RH对于孔内填充缺陷的影响	73
图 A7-14	采用 SAC305 焊料测试,2 次无铅再流焊	
	的应力影响示例; ΙAu 厚度为 1.77 μm ···	74
图 A7-15	采用 SAC305 焊料测试, 经受 2 次无铅	
	再流焊 +8 小时 72℃ /85%RH 应力影响	
	示例。I Au 厚度为 2.37 µm。	75
图 A7-16	孔内填充缺陷用于预测作用的总结图。	76
图 A8-1	SEM / EDS / FIB 设备照片 ······	77
图 A8-2	样品 VI (3000X)	78
图 A8-3	碘化钾 / 碘剥金的 EDAX 谱图	78
图 A8-4	FIB-SEM 截面 10,000 倍	79
图 A8-5	样本 VI, 3000 倍 ······	79
图 A8-6	氰化物剥金的 EDAX 谱图	79
图 A8-7	氰化物剥金的 EDAX 谱图	80
图 A8-8	FIB-SEM 截面(10,000 倍)	80
图 A8-9	样本 VI, 10,000 倍 ······	80
图 A8-10	样本 VI, 10,000 倍 ······	81
图 A9-C-A	宽束氩离子研磨	85
图 A9-C-1	离子研磨前 ENIG 表面处理的表面 SEM 图]
	(背散射)。	89
图 A9-C-2	经30秒离子研磨ENIG表面的SEM图	
	(背散射)。一些金明显残留表明样品	
	仍需进一步研磨。	89
图 A9-C-3	经一分钟离子研磨 ENIG 表面的 SEM 图	
	(背散射)。结瘤形貌完整且无金残留表明	
	样品已研磨适当。	89

х

图 A9-C-4	经15分钟离子研磨 ENIG 表面的 SEM 图	
	(背散射)。明显无金残留,但明显的颗粒	
	结构和一些沟槽形貌表明样品已被	
	过度研磨 8	39
图 A9-C-5	经15分钟离子研磨 ENIG 表面的 SEM 图	
	(背散射)。过腐蚀依然明显但没有显著	
	扩大。 8	39
图 A10-1	XRF 仪器设置图 9	9 1
图 A10-2	关于样品在检测器的放置位置 9	93
图 A10-3	直径 1mm 准直器定位在 1.5mm X 1.5mm	
	[0.060in X 0.060in] 焊盘上 ······ 9) 3
图 A10-4	相互作用图示	94
图 A10-5	PCB 铜表面化镍层 IP-K 和 INi-K 谱图 … 9) 5
图 A10-6	NiP12/Cu/PCB 样品(蓝色)和 50nm Au/	
	96nm Pd/3.2µm NiP 9.3/Cu/PCB 样品(黄色),
	显示 P-K 和 Au-M 能量谱线峰重叠 9	96
图 A11-1	7 家测试机构对样品 A 的磷含量的报告结果	₹°
	磷含量从最低 3.85 wt.% 到最高 48.09 wt.%。	0
	通常较高的磷含量测试值,所用电压来自于	-
	EDS 供应商所推荐的典型用于测试磷含量的	勺
	较低的 kV 值。 9	98
图 A11-2	8家测试机构对样品 B 的磷含量的报告结	
	果。磷含量从最低 3.36 wt.% 到最高	
	58.09 wt.%。值得注意的是样品 A 测出极值	Ĺ
	的机构,与样品 B 测出极值的机构并不	
_	一致。) 9
图 A11-3	8家测试机构对样品 C 的磷含量的报告结果	Į Co
	磷含量从最低 3.92 wt.% 到最高 61.24 wt.%。	0
	样品 B 测出极值的 2 家机构,同样在样品(2
	的测试值中为极值。此外,发现机构2在重	灵
	高加速电压测得了低的白分含量,而机构 8	;
四	在最低加速电压测得了低的自分含量。 … 9	, 9
图 AII-4	个天汪所用的加速电压,A组杆品泊最	100
团 411 5		100 7
图 AII-5	个大注所用的加速电压, B 组样品泊载一致	L 100
团 411 (的日分含重结果	100 7 66
图 A11-6	个大注所用的加速电压,C组样品泊取一到 五八个是结果 上 D 组 目 并 的 西 字 机 为 测 2	しい 日
	日刀 百里 垣 禾。 与 B 珇 回 杆 的 两 豕 机 构 测 得 了 是 一 动 的 结 田	守 101
团 4 1 2 1	」取一致的结末。	101
宮 A12-1	並広序受购互结禾 自己原府调本结用	103
宮 A12-2	床広序反响互结禾 []	104 107
宮 A12-3	个PFIAMF 汉命天空侧里玉序侵阻的印状 ***]	100

图 A12-4	有着相同槽体寿命的供应商提供的金镀层	
	厚度变化对比	108
图 A12-5	有着相同槽体寿命条件的供应商提供的	
	镍镀层厚度变化对比	109
图 A12-6	供应商 D 样品浸镀停留时间的润湿时间	
	函数 (90 天老化)	110
图 A12-7	供应商 E 样品浸镀停留时间的润湿时间	
	函数 (90 天老化)	111
图 A12-8	测试附连板	112
图 A12-9	供应商 D 经过 18 小时 85° C/85% R.H	
	老化后润湿称量数据	113
图 A12-10	lµin 浸金层存储 8个月样品与接收态样	
	品、85/85 老化后的样品对比	114
图 A12-11	lµin 浸金层在不同存储时间 / 条件下的	
	对比	115
图 A12-12	供应商D互扣式四方接触的接触电阻	
	数值	117
图 A12-13	供应商 C 互扣式四方接触的接触电阻数值	118
图 A12-14	不同供应商提供的互扣式四方接触测试样	
	品金厚对比	119
图 A12-15	互扣式四方接触测试附连板	120
图 13-1a	部分误判	121
图 13-1b	部分误判	121
图 A13-2	安全区间	122
图 A13-3	第1类型的测量研究结果	123

表格

表 3-1	化学镀镍 / 浸金镀覆层的要求	4
表 3-2	12 次金厚测量及平均厚度	11
表 3-3	3 组 XRF 数据例子 (=µin)	22
表 3-4	XRF 数据例子 (=µin) ······	22
表 3-5	采用光学显微镜观察的过腐蚀3个等级	26
表 4-1	建议的制造厂鉴定计划	31
表 4-2	C=0的抽样计划(样品数量为特有的	
	指数值)	32
表 A4-1	样品均值-4σ,最小值1.0μin(所有	
	供应商都低于这个目标)	38
表 A4-2	样品均值-4σ,最小值1.5μin	
	(仅有一个供应商达标)	38
表 A4-3	样品均值-4σ,最小值2.0μin (对照试样)	
	(仅有一个供应商达标)	38
表 A5-1	附录 G3 用于焊料铺展测试的 PCB 由 XRF	7

	测得金厚	55
表 A5-2	焊料铺展评价测试矩阵说明	55
表 A5-3	锡膏、金厚及 PCB 前处理各组合的焊料	
	铺展平均结果	57
表 A6-1	浸金层平均厚度	61
表 A6-2	1mil 铝键合丝的拉力值 ······	61
表 A6-3	10mil 铝键合丝的拉力值	61
表 A6-4	1mil铜键合丝的拉力值 ······	61
表 A10-1	NiP/Cu/PCB 样品典型可以获得的结果	
	(1mm 准直器,测量时间 120 秒) ·······	92
表 A10-2	对图 A10-6 样品 5 个测量读数(重复	
	条件)的评估	93
表 A13-1	安全区间 Sigma 推荐值 ······	121
表 A13-2	安全区间 Sigma 推荐值	124