IPC-4103

Specification for Base Materials for High Speed/High Frequency Applications
The Principles of Standardization

In May 1995 the IPC’s Technical Activities Executive Committee adopted Principles of Standardization as a guiding principle of IPC’s standardization efforts.

Standards Should:
- Show relationship to Design for Manufacturability (DFM) and Design for the Environment (DFE)
- Minimize time to market
- Contain simple (simplified) language
- Just include spec information
- Focus on end product performance
- Include a feedback system on use and problems for future improvement

Standards Should Not:
- Inhibit innovation
- Increase time-to-market
- Keep people out
- Increase cycle time
- Tell you how to make something
- Contain anything that cannot be defended with data

Notice

IPC Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of IPC from manufacturing or selling products not conforming to such Standards and Publication, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than IPC members, whether the standard is to be used either domestically or internationally.

Recommended Standards and Publications are adopted by IPC without regard to whether their adoption may involve patents on articles, materials, or processes. By such action, IPC does not assume any liability to any patent owner, nor do they assume any obligation whatever to parties adopting the Recommended Standard or Publication. Users are also wholly responsible for protecting themselves against all claims of liabilities for patent infringement.

IPC Position Statement on Specification Revision Change

It is the position of IPC’s Technical Activities Executive Committee (TAEC) that the use and implementation of IPC publications is voluntary and is part of a relationship entered into by customer and supplier. When an IPC standard/guideline is updated and a new revision is published, it is the opinion of the TAEC that the use of the new revision as part of an existing relationship is not automatic unless required by the contract. The TAEC recommends the use of the lastest revision. Adopted October 6, 1998

Why is there a charge for this standard?

Your purchase of this document contributes to the ongoing development of new and updated industry standards. Standards allow manufacturers, customers, and suppliers to understand one another better. Standards allow manufacturers greater efficiencies when they can set up their processes to meet industry standards, allowing them to offer their customers lower costs.

IPC spends hundreds of thousands of dollars annually to support IPC’s volunteers in the standards development process. There are many rounds of drafts sent out for review and the committees spend hundreds of hours in review and development. IPC’s staff attends and participates in committee activities, typesets and circulates document drafts, and follows all necessary procedures to qualify for ANSI approval.

IPC’s membership dues have been kept low in order to allow as many companies as possible to participate. Therefore, the standards revenue is necessary to complement dues revenue. The price schedule offers a 50% discount to IPC members. If your company buys IPC standards, why not take advantage of this and the many other benefits of IPC membership as well? For more information on membership in IPC, please visit www.ipc.org or call 847/790-5372.

Thank you for your continued support.
Specification for Base Materials for High Speed/High Frequency Applications

Developed by the High Speed/High Frequency Base Materials Subcommittee (D-23) of the High Speed/High Frequency Committee (D-20) of IPC

Users of this specification are encouraged to participate in the development of future revisions.

Contact:

IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
Acknowledgment

Any Specification involving a complex technology draws material from a vast number of sources. While the principal members of the High Speed/High Frequency Base Materials Subcommittee (D-23) of the High Speed/High Frequency Committee (D-20) are shown below, it is not possible to include all of those who assisted in the evolution of this specification. To each of them, the members of the IPC extend their gratitude.

<table>
<thead>
<tr>
<th>High Speed/High Frequency Committee</th>
<th>High Speed/High Frequency Base Materials Subcommittee</th>
<th>Technical Liaison of the IPC Board of Directors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair Thomas Bresnan, Sanmina Corporation</td>
<td>Chair Robert J. Konsowitz, GIL Technologies</td>
<td>Dr. William Beckenbaugh, Sanmina</td>
</tr>
</tbody>
</table>

High Speed / High Frequency Base Materials Subcommittee

- Masamitsu Aoki, Toshiba Chemical Corp.
- Richard A. Barnett, Compaq Computer Corporation
- Amit Bhardwaj, Polar Instruments, Ltd.
- Ronald J. Brock, NSWC - Crane
- Mike Bryant, BGF Industries Inc.
- Gerard Cave, Pacific Testing Laboratories, Inc.
- Christine R. Coapman, Delphi Delco Electronics Systems
- David J. Corbett, Defense Supply Center Columbus
- Ronald Desilets, Raytheon Systems Company
- Patricia S. Dupuis, Raytheon Company
- Mahendra S. Gandhi, Space Systems/Loral
- Otto Ken Goins, Jr., Albemarle Corporation
- Malcolm Green, California Export Finance Office
- Margie Hillsman, Harmon Industries, Inc.
- Roy M. Keen, Rockwell Collins
- Thomas E. Kemp, Rockwell Collins
- Joseph D. Leibowitz, Shirline Composites Inc.
- Gregory L. Lucas, Circuit Solutions Corporation
- P. Douglas Lyle, Advanced Glassfiber Yarns LLC
- Rene R. Martinez, TRW Electronics & Technology Division
- Joel L. Murray, Hexcel Schwebel
- Michael B. Norris, Rogers Corporation
- Thomas J. Nowak, Nowak & Associates
- Jan Obrzut, Ph.D., NIST

Christopher G. Olson, Rockwell Collins
Thierry Philibert, Hexcel Fabrics S.A.
Roberta Ross, Taconic, Advanced Dielectric Division
Visa Ruuhonen, Nokia Networks
Kenneth C. Selk, TRW Electronics & Technology Division
Steve M. Sekanina, Neltec, Inc.
Lowell Sherman, Defense Supply Center Columbus
G. Robert Traut, Rogers Corporation
Richard Trine, Taconic
Antti Vaisanen, Nokia Networks
Kevin Walker, Rogers Corporation
Daniel Welch, Arlon MED
Philip R. Wellington, L-3 Communications
Jih Yuan, Ph.D., Lucent Technologies
Table of Contents

1 GENERAL

1.1 Scope .. 1
1.2 Classification .. 1
1.2.1 Specification Sheet Description 1
1.2.2 Dielectric Permittivity 1
1.2.3 Dielectric Permittivity Tolerance 1
1.2.4 Nominal Laminate Thickness 1
1.2.5 Thickness Tolerance, Laminate 1
1.2.6 Surface Quality Class 1
1.2.7 Metal Cladding Type, Nominal Weight 1
1.2.8 Reinforcement Style ... 2
1.2.9 Resin Type ... 2
1.2.10 Bonding Layer Parameters 2
1.2.11 Color .. 2
1.3 Dimensions and Tolerances 3
1.4 Interpretation .. 3

2 APPLICABLE DOCUMENTS

2.1 IPC ... 3
2.2 Joint Industry Standards ... 3
2.3 National Conference of Standards Laboratories 4
2.4 Federal Specifications ... 4
2.5 ASQ .. 4
2.6 ASTM .. 5
2.7 International Standards .. 5

3 REQUIREMENTS

3.1 Terms and Definitions ... 5
3.1.1 Qualification Assessment 5
3.1.2 Quality Conformance Testing 5
3.1.3 Manufacturers Quality System 5
3.1.4 Process Control Testing 5
3.1.5 Self Declaration .. 5
3.1.6 Quality Assessment Data 5
3.1.7 Sample Qualification .. 5
3.1.8 Production Data ... 5
3.1.9 Customer Test Data ... 5
3.1.10 Internal Assessment 5
3.1.11 Individual Customer Audit 6
3.1.12 Independent Third Party Assessment 6
3.2 Specification Sheets ... 6
3.3 Manufacturers Quality Profile 6
3.4 Qualification Testing ... 6

3.4.1 Qualification Testing Laminate 6
3.4.2 Qualification Testing Bonding Layer 6
3.5 Verification of Manufacturer’s Quality System 6
3.6 Conflict .. 6
3.7 Materials ... 6
3.7.1 Metal Cladding ... 6
3.7.2 Reinforcement Fabric 6
3.7.3 Resin System ... 6
3.7.4 Fillers ... 6
3.8 General Requirements/Acceptability 6
3.8.1 Fabricated Sheets and Panels 7
3.8.2 Inspection Lot .. 7
3.8.3 Visual Properties ... 7
3.8.4 Dimensional .. 9
3.9 Physical Requirements .. 11
3.9.1 Physical Requirements, Laminate Materials 11
3.9.2 Physical Requirements, Bonding Layer Materials 14
3.10 Chemical Requirements ... 15
3.10.1 Chemical Requirements, Laminate 15
3.10.2 Chemical Requirements, Bonding Layer 15
3.10.3 Flammability .. 15
3.11 Electrical Requirements .. 15
3.11.1 Electrical Requirements, Laminate 15
3.11.2 Electrical Requirements, Bonding Layer 16
3.12 Environmental Requirements 16
3.12.1 Environmental Requirements, Laminate 16
3.12.2 Environmental Requirements, Bonding Layer 16
3.13 Visual and Dimensional Requirements, Laminates 16
3.13.1 Substitutability of Grades of Metal Foil Indentations . 16
3.13.2 Substitutability of Classes of Thickness Tolerance . 16
3.13.3 Remarking of Substituted Laminates 16
3.14 Marking ... 16
3.14.1 Marking, Laminates 16
3.14.2 Marking Bonding Layer 17
3.14.3 Marking of Shipping Containers 17
3.15 Workmanship .. 17
3.16 Material Safety .. 17
3.17 Bonding Layer Shelf Life 17
Specification for Base Materials for High Speed/High Frequency Applications

1 GENERAL

1.1 Scope This specification covers the requirements for high speed/high frequency base materials, herein referred to as laminate or bonding layer, to be used primarily for the fabrication of rigid or multilayer printed boards for high speed/high frequency electrical and electronic circuits. This specification applies to material thickness defined in the specification sheets as measured over the dielectric only.

1.2 Classification The system shown below identifies clad and unclad laminate or bonding layer base materials. A cross-reference list, which connects the outlined call-out system in this document to previously used systems, is shown in the specification sheet section.

Example for laminate base materials where IPC-4103 is referenced:

<table>
<thead>
<tr>
<th>Specification Number</th>
<th>Specification Revision</th>
<th>Material Designator (see 1.2.1)</th>
<th>Specification Sheet (see 1.2.1)</th>
<th>Dielectric Permittivity Range (see 1.2.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4103</td>
<td>–</td>
<td>L</td>
<td>01</td>
<td>C</td>
</tr>
</tbody>
</table>

Dielectric Permittivity Tolerance (see 1.2.3) Nominal Laminate Thickness (see 1.2.4)

<table>
<thead>
<tr>
<th>Dielectric Permittivity</th>
<th>Nominal Laminate Thickness</th>
<th>Thickness Tolerance (see 1.2.5)</th>
<th>Surface Quality (see 1.2.6)</th>
<th>Metal Cladding Type and Nominal Weight/Thickness (see 1.2.7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>A</td>
<td>A</td>
<td>C1/C1</td>
<td></td>
</tr>
</tbody>
</table>

Example for bonding layer base materials where IPC-4103 is referenced:

<table>
<thead>
<tr>
<th>Specification Number</th>
<th>Specification Revision</th>
<th>Material Designator (see 1.2.1)</th>
<th>Specification Sheet (see 1.2.1)</th>
<th>Dielectric Permittivity Range (see 1.2.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4103</td>
<td>–</td>
<td>B</td>
<td>01</td>
<td>C</td>
</tr>
</tbody>
</table>

Reinforcement Style (see 1.2.8)

<table>
<thead>
<tr>
<th>Reinforcement Style</th>
<th>Resin Type (see 1.2.9)</th>
<th>Resin Content Column A (see 1.2.10)</th>
<th>Flow Parameter Column B (see 1.2.10)</th>
<th>Optional Bonding Layer Method (see 1.2.10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0106</td>
<td>P</td>
<td>TW</td>
<td>RE</td>
<td>VC</td>
</tr>
</tbody>
</table>

1.2.1 Specification Sheet Description At the end of this document is a series of specification sheets. Each sheet outlines requirements for both laminate and bonding layers for each product grade. The specification sheets are organized by a specific reinforcement type, resin system, and/or construction and are provided with a Specification Sheet Number for ordering purposes. The laminate and bonding layer requirements for materials of the like composition are on the same specification sheet for convenience. Material Designator “L” indicates laminate material and Material Designator “B” indicates bonding layer material as shown in the above designation examples. A bonding layer may be a thermoset or thermoplastic film or thermoplastic or thermoset prepreg.

1.2.2 Dielectric Permittivity The nominal permittivity is identified by a letter designation (A, B, C, D, E, F or X) as indicated on the applicable specification sheet.

1.2.3 Dielectric Permittivity Tolerance The permittivity tolerance is identified by a number designation (1, 2, 3, 4, 5, or X). See 3.11.1.1 and Table 3-8.

1.2.4 Nominal Laminate Thickness The nominal thickness is identified by four digits. For all substrates covered by this document, thickness is specified or measured over the dielectric (see 3.8.4.2). For metric specification, the first digit represents whole millimeters, the second represents tenths of millimeters, etc. The four digits indicate the thickness in whole millimeters. In the example shown in 1.2, 1500 is designated for the English usage of 0590.

1.2.5 Thickness Tolerance, Laminate The class of thickness tolerance for laminate base material is identified by either A, B, C, D, E, F, G, H, or X as agreed upon between user and supplier (see 3.8.4.2 and Table 3-6).

1.2.6 Surface Quality Class The class of surface quality is identified by either A, B, C, D, or X as agreed upon between user and supplier (see 3.8.3.1.1).

1.2.7 Metal Cladding Type, Nominal Weight The type and nominal weight or thickness of the metallic cladding for laminate base material is identified by five designators, with the first and fourth designators indicating type of cladding, the third designator being a slash mark to differentiate sides of the base material, and the second and fifth designators indicating the nominal weight or thickness of the metallic cladding.

1.2.7.1 The types of metallic cladding and the designators representing them are shown in Table 1-1. This table is provided as a reference only. The referee document is the latest version of IPC-CF-148A, IPC-4562, or IPC-CF-152 as appropriate. Cladding types C and R, and H and S,