IPC-2591-Version 1.7

Connected Factory Exchange (CFX)

Developed by the IPC-CFX Standard Task Group (2-17a) of the Electronic Product Data Description Committee (2-10) of IPC

Supersedes:
IPC-2591-Version 1.6 - March 2023
IPC-2591-Version 1.5 - July 2022
IPC-2591-Version 1.4 - December 2021
IPC-2591-Version 1.3 - February 2021
IPC-2591-Version 1.2 - September 2020
IPC-2591-Version 1.1 - January 2020
IPC-2591 - March 2019

Users of this publication are encouraged to participate in the development of future revisions.
Table of Contents

1 SCOPE ... 1
1.1 Purpose .. 1
1.2 Application of This Standard ... 1
1.3 CFX and The Hermes Standard 1
1.4 Updates to This Standard .. 1
1.5 Definition of Requirements .. 2
1.6 Order of Precedence ... 2
1.6.1 Conflict ... 2
1.6.2 Clause References ... 2
1.7 Acronyms ... 2
1.8 Terms and Definitions .. 2
1.8.1 Activity .. 2
1.8.2 Component .. 2
1.8.3 Dashboard ... 2
1.8.4 Data Integrity ... 2
1.8.5 Endpoint .. 3
1.8.6 Factory Resource ... 3
1.8.7 Lane ..========= 3
1.8.8 Lock ... 3
1.8.9 Material Carrier .. 3
1.8.10 Material Chain .. 3
1.8.11 Material Location .. 3
1.8.12 Material Package ... 3
1.8.13 Material Traceability .. 3
1.8.14 Materials ... 3
1.8.15 Operator ... 3
1.8.16 Process Endpoint (Station) 3
1.8.17 Production Unit ... 3
1.8.18 Recipe .. 3
1.8.19 Root .. 3
1.8.20 Setup .. 3
1.8.21 State (Production State) ... 3
1.8.22 Station (Process Endpoint) 3
1.8.23 Stage .. 3
1.8.24 Subassembly ... 3
1.8.25 Symptom ... 3
1.8.26 Tool .. 4
1.8.27 Transactional Endpoint .. 4

2 APPLICABLE DOCUMENTS .. 4
2.1 IPC .. 4
2.2 ECMA International ... 4
2.3 International Organization for Standardization (ISO) 4
2.4 SEMI .. 4

3 GENERAL REQUIREMENTS ... 4
3.1 Guidance on the Use of This Standard 4
3.1.1 Technical Reference .. 4
3.1.2 Application Reference ... 4
3.2 Users of CFX .. 4
3.2.1 Automated Assembly Processes 5
3.2.2 In-House Manufacturing Solution Development 5
3.2.3 MES Software Solutions ... 5
3.3 Software Development Environment 5
3.4 CFX Support Declaration ... 5

4 CFX STRUCTURAL OVERVIEW 5
4.1 Primary Transport Layer: AMQP v1.0 5
4.1.1 CFX Message Channels ... 6
4.1.2 Channel Configuration .. 7
4.1.3 CFX Message Types .. 7
4.1.4 CFX Compression ... 7
4.1.5 CFX – AMQP Message Properties 7
4.2 Encoding: JSON ... 7
4.2.1 JSON Data Types ... 8
4.3 CFX-Defined Content .. 9
4.4 CFX Key Parameters .. 9
4.4.1 Endpoint Identification (CFX Handle) 9
4.4.2 TransactionID .. 9
4.5 CFX Message Envelope ... 10
4.6 Operator Information .. 10
4.7 CFX Endpoint Configuration ... 10
4.7.1 Specific CFX Endpoint Configuration Addresses 11
4.8 Message Attachments .. 12
4.8.1 Specifying Message Attachments 12
4.8.2 In-Band Message Attachments 12
4.8.3 Out-of-Band Attachments ... 13
Figures
Figure 1-1 Version Change Tracking Example 2
Figure 4-1 CFX Channels Between Endpoints 6
Figure 4-2 The CFX TransactionID 9
Figure 5-1 SEMI E10 Equipment State Model 15
Figure 5-2 Examples of Groupings of Production Units .. 19
Figure 5-3 Panelized Printed Board (Top View) 20
Figure 5-4 CFX Unit Locations Identified on Multiple-Board Panel (Top View) 20
Figure 5-5 Panel Processing Example — No Defects Found .. 21
Figure 5-6 Panel Processing Example — One Production Unit Scrapped 21
Figure 5-7 Panel Inspection Example — One Production Unit Failure 22
Figure 5-8 Panel Review/Repair Example — One Production Unit Repaired 22
Figure 5-9 Panel Review/Repair Example — Whole Panel Scrapped 22
Figure 5-10 CFX Production Station Process Model ... 23
Figure 7-1 CFX Station Connection Example Message Flow .. 43
Figure 7-2 CFX Station State Transition Example Message Flow 44
Figure 7-3 CFX Station Processing Example Message Flow .. 45

Tables
Table 4-1 Types of CFX Messages 7
Table 4-2 CFX – AMQP Message Properties 8
Table 4-3 CFX Message Envelope 10
Table 4-4 Format of Attachments Array Entries 12
Table 4-5 Columns for SolderPasteMeasurement Attachment Type 14
Table 4-6 Columns for OffsetMeasurement Attachment Type .. 15
Table 5-1 Station Event Fault Model 18
Table 6-1 CFX Capability Requirements by Equipment Type .. 26
Table 6-2 Required Messages by Capability 28
Table 7-1 CFX.Root Messages 32
Table 7-2 CFX.InformationSystem.DataTransfer Messages 32
Table 7-3 CFX.InformationSystem.OperatorValidation Messages 32
Table 7-4 CFX.InformationSystem.Production Scheduling Messages 32
Table 7-5 CFX.InformationSystem.UnitValidation Messages 33
Table 7-6 CFX.InformationSystem.WorkOrder Management Messages 33
Table 7-7 CFX.Maintenance Messages 34
Table 7-8 CFX.Materials.Management Messages 35
Table 7-9 CFX.Materials.Management.MSD Management Messages 35
Table 7-10 CFX.Materials.Storage Messages 36
Table 7-11 CFX.Materials.Transport Messages 36
Table 7-12 CFX.Production Messages 37
Table 7-13 CFX.Production.Application Messages 38
Table 7-14 CFX.Production.Assembly Messages 38
Table 7-15 CFX.Production.Assembly.PressInsertion Messages 38
Table 7-16 CFX.Production.Hermes Messages 39
Table 7-17 CFX.Production.LoadingAndUnloading Messages 39
Table 7-18 CFX.Production.Processing Messages 39
Table 7-19 CFX.Production.ReworkAndRepair Messages .. 40
Table 7-20 CFX.Production.TestAndInspection
 Messages.................................40
Table 7-21 CFX.ResourcePerformance Messages41
Table 7-22 CFX.ResourcePerformance.Press
 Insertion Messages41
Table 7-23 CFX.ResourcePerformance.SMTPlacement
 Messages.................................42
Table 7-24 CFX.ResourcePerformance.SolderPaste
 Printing Messages42
Table 7-25 CFX.ResourcePerformance.THTInsertion
 Messages.................................42
Table 7-26 CFX.Sensor.Identification Messages43
IPC-2591, Version 1.7
Connected Factory Exchange (CFX)

1 SCOPE
This standard establishes the requirements for the omnidirectional exchange of information between manufacturing processes and associated host systems for assembly manufacturing. This standard applies to communication between all executable processes in the manufacture of printed board assemblies—automated, semiautomated, and manual—and is applicable to related mechanical assembly and transactional processes.

1.1 Purpose
With the growth and acceptance of digital modeling and practices in manufacturing, the lack of a holistic Industrial Internet of Things (IIoT) standard for the transfer of information between machines, systems, and processes has become a severe limitation to the growth of digitization and computerization in the electronics manufacturing industry, inhibiting technology innovations such as Industry 4.0 and Smart Factories being available to all companies in the industry, regardless of size, sector, and location.

This Connected Factory Exchange (CFX) standard provides a true ‘‘plug and play’’ Internet of Things (IoT) communication environment throughout manufacturing, where all equipment, manufacturing processes, and transactional stations can communicate with each other without the need for the development and use of bespoke interfaces. CFX-enabled equipment and solutions from different vendors work seamlessly together.

There are many types of users of this CFX standard, including equipment vendors, solution providers, in-house information technology (IT) groups, etc. The many types of data included in CFX are used in different ways depending on the application; for example, closed-loop feedback systems, live production dashboards, traceability (IPC-1782), manufacturing execution systems (MES) control, lean supply chain management, active quality management, production control, etc.

As CFX data is fully omnidirectional, any CFX endpoint connection can consume data as well as create it. As an illustration, consider the scenario in which a single machine from a certain vendor is connected in-line with other machines from different vendors. CFX messages are sent from the single machine to other machines in the line, and to host systems such as MES. The single machine can also receive CFX messages from all other machines in the line, as well as from the host systems in order to optimize the machine operation and enable the vendor of the machines to create added-value functionality, such as to support machine-specific Industry 4.0. In this way, a smart, digital, Industry 4.0 factory will be comprised of many different Industry 4.0 computerization applications, each of which can be provided by different suppliers, at the machine, line, site, and even enterprise levels, all working together, sharing data seamlessly through CFX.

This CFX standard supports the concept of big data by including data of different types from across the factory, including performance, materials, resources, users, quality events, product tracking, etc., all of which can be combined to create a big-data environment. CFX, therefore, provides many kinds of added value opportunities to the whole manufacturing operation, including, for example, improving operational efficiency and productivity, quality and reliability, agility and responsiveness. This CFX standard helps organizations ensure that end users/consumers will receive products and services that meet or exceed their expectations and in the timeliest and most economically viable method.

1.2 Application of This Standard
This standard defines the communication protocol and content across all assembly production processes, irrespective of type or method of operation. It can also be applied to transactional operations. There are no restrictions in terms of product classification sector, size of operation or location. Surface-mount technology (SMT) production is not required to be a part of the factory. Though intended to support all aspects of printed board production, the use of CFX can be extended downstream to include, for example, mechanical assembly, personalization, packing and shipping, as well as upstream to include, for example, electrical and mechanical subassemblies.

1.3 CFX and The Hermes Standard
This CFX standard is complementary to IPC-HERMES-9852. The Hermes Standard, as an advanced, intelligent Surface Mount Equipment Manufacturers Association (SMEMA) standard replacement, provides near-instant line control, passing information about production units as they pass down the line. CFX provides vertical messaging that is complementary to Hermes.

1.4 Updates to This Standard
The IPC-CFX Standard Task Group intends to make frequent incremental revisions to this standard to support additional machines and processes. Version updates are identified by version number and the change (added, removed, etc.), so the reader can easily identify changes in each version. See Figure 1-1 for an example of this version change tracking using a portion of the CFX.Production.TestAndInspection table of this standard as an example.

Appendix A also provides an itemized version history.

All messages in this standard apply to IPC-2591, Version 1.0 and subsequent versions, unless otherwise stated.