Qualification and Performance Specification for Flexible Printed Boards

Developed by the Flexible Circuits Performance Specifications Subcommittee (D-12) of the Flexible Circuits Committee (D-10) of IPC

Supersedes:
IPC-6013 with Amendment 1
Includes:
IPC-6013 - November 1998 Amendment 1 - April 2000
IPC-RF-245 - April 1987
IPC-FC-250A - January 1974

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
Table of Contents

1 SCOPE

1.1 Purpose .. 1
1.2 Performance Classification, Wiring Type, and Installation Usage .. 1
1.2.1 Classification .. 1
1.2.2 Wiring Type ... 1
1.2.3 Installation Uses .. 1
1.2.4 Selection for Procurement 1
1.2.5 Material, Plating Process and Final Finish 1
1.3 Interpretation .. 2

2 APPLICABLE DOCUMENTS ... 2
2.1 IPC ... 2
2.2 Joint Industry Standards 4
2.3 Federal ... 4
2.4 American Society for Testing and Materials 4
2.5 National Electrical Manufacturers Association ... 4
2.6 American Society for Quality 4

3 REQUIREMENTS .. 4
3.1 Terms and Definitions ... 4
3.1.1 Coverlayer .. 4
3.1.2 Coverfilm .. 4
3.1.3 Covercoat .. 4
3.2 Material ... 4
3.2.1 Flexible Material Options 4
3.2.2 Laminates and Bonding Material for Multilayer Flexible Printed Wiring 4
3.2.3 External Bonding Materials 5
3.2.4 Other Dielectric Materials 5
3.2.5 Metal Foils .. 5
3.2.6 Metallic Platings and Coatings 5
3.2.7 Organic Solderability Protective Coatings (OSP) .. 5
3.2.8 Solder Resist .. 5
3.2.9 Fusing Fluids and Fluxes 5
3.2.10 Marking Inks .. 6
3.2.11 Hole Fill Insulation Material 6
3.2.12 Heatsink Planes, External 6
3.3 Visual Examination .. 6
3.3.1 Profile ... 6
3.3.2 Construction Imperfections - Rigid 6
3.3.3 Plating and Coating Voids in the Hole 9
3.3.4 Marking ... 9
3.3.5 Solderability .. 9
3.4 Dimensional Requirements 10
3.4.1 Hole Size and Hole Pattern Accuracy 10
3.4.2 Etched Annular Ring and Breakout (Internal) .. 10
3.4.3 Etched Annular Ring (External) 10
3.4.4 Bow and Twist (Individual Rigid or Stiffener Portions Only) .. 12
3.4.5 Edge Board Contact, Junction of Gold Plate to Solder Finish .. 10
3.4.6 Lifted Lands ... 10
3.4.7 Workmanship .. 10
3.4.8 Dimensional Requirements 10
3.5 Structural Integrity .. 14
3.5.1 Thermal Stress Testing 15
3.5.2 Requirements for Microsectioned Coupons ... 15
3.5.3 Flexible Laminate Integrity 15
3.5.4 Rigid Laminate Integrity 15
3.5.5 Etchback (Type 3 and Type 4 Only) 15
3.5.6 Smear Removal (Type 3 and Type 4 Only) 15
3.5.7 Negative Etchback ... 15
3.5.8 Plating Integrity .. 15
3.5.9 Plating Voids ... 16
3.5.10 Annular Ring (Internal) 17
3.5.11 Plating/Coating Thickness 17
3.5.12 Minimum Layer Copper Foil Thickness 17
3.5.13 Minimum Surface Conductor Thickness 17
3.5.14 Metal Cores .. 17
3.5.15 Dielectric Thickness .. 17
3.5.16 Resin Fill of Blind and Buried Vias 17
3.6 Electrical Requirements .. 17
3.6.1 Bending Test .. 14
3.6.2 Flexible Endurance ... 14
3.6.3 Bond Strength (Unsupported Lands) 14
3.6.4 Bond Strength (Stiffener) 14
3.6.5 Rework Simulation ... 17
3.7 Conductor Definition ... 12
3.7.1 Conductor Imperfections 13
3.7.2 Conductor Spacing .. 13
3.7.3 Conductive Surfaces ... 13
3.7.4 Rigid Laminate Integrity 15
3.7.5 Etchback (Type 3 and Type 4 Only) 15
3.7.6 Smear Removal (Type 3 and Type 4 Only) 15
3.7.7 Negative Etchback ... 15
3.7.8 Plating Integrity .. 15
3.7.9 Plating Voids ... 16
3.7.10 Annular Ring (Internal) 17
3.7.11 Plating/Coating Thickness 17
3.7.12 Minimum Layer Copper Foil Thickness 17
3.7.13 Minimum Surface Conductor Thickness 17
3.7.14 Metal Cores .. 17
3.7.15 Dielectric Thickness .. 17
3.7.16 Resin Fill of Blind and Buried Vias 17
3.8 Rework Simulation .. 17
3.9 Electrical Requirements .. 19
3.9.1 Dielectric Withstanding Voltage 19
3.9.2 Circuitry .. 19
3.9.3 Circuit/Plated-Through Hole Shorts to Metal Substrates ... 20
3.9.4 Insulation Resistance (As Received) 20

November 2003

IPC-6013A
3.10 Environmental Requirements ... 20
3.10.1 Moisture and Insulation Resistance 20
3.10.2 Thermal Shock .. 20
3.10.3 Cleanliness ... 20
3.10.4 Organic Contamination ... 20
3.10.5 Fungus Resistance ... 20
3.11 Special Requirements .. 20
3.11.1 Outgassing .. 21
3.11.2 Impedance Testing .. 21
3.11.3 Repair ... 21
3.11.4 Circuit Repair ... 21
3.11.5 Rework .. 21
3.11.6 Coefficient of Thermal Expansion (CTE) 21
4 QUALITY ASSURANCE PROVISIONS 21
4.1 Qualification .. 21
4.1.1 Sample Test Specimen .. 21
4.2 Acceptance Testing and Frequency 24
4.2.1 Referee Tests .. 24
4.3 Quality Conformance Testing .. 24
4.3.1 Coupon Selection ... 28
5 NOTES ... 28
5.1 Ordering Data .. 28
5.2 Superseded Specifications .. 28
APPENDIX A ... 29

Figures
Figure 3-1 Transition Zone .. 7
Figure 3-2 Unacceptable Covercoat Coverage 8
Figure 3-3 Solder Wicking and Plating Penetration 9
Figure 3-4 Annular Ring Measurement (Internal) 11
Figure 3-5 Annular Ring Measurement (External) 11
Figure 3-6 Breakout of 90° and 180° 12
Figure 3-7 Conductor Width Reduction 12
Figure 3-8 Squeeze-Out of Cover Film Adhesive and Ooze-Out of Covercoat .. 12
Figure 3-9 Bending Test .. 14
Figure 3-10 Separation at External Foil 17
Figure 3-11 Crack Definition .. 17
Figure 3-12 Typical Microsection Evaluation Specimen (Three Plated-Through Holes) 18
Figure 3-13 Etchback Depth Allowance 18
Figure 3-14 Smear Removal Allowance 18
Figure 3-15 Negative Etchback ... 19

Tables
Table 1-1 Final Finish, Surface Plating and Coating Thickness Requirements .. 3
Table 3-1 Covercoat Adhesion .. 8
Table 3-2 Solder Wicking/Plating Penetration Limits 9
Table 3-3 Plating and Coating Voids Visual Examination 9
Table 3-4 Edge Board Contact Gap ... 10
Table 3-5 Minimum Etch Annular Ring 11
Table 3-6 Allowable Squeeze-Out of Coverlayer Adhesive and Ooze-Out of Covercoat 12
Table 3-7 Minimum Solderable Annular Ring on Land Area 12
Table 3-8 Conductor Spacing Requirements 13
Table 3-9 Plated-Through Hole Integrity After Stress 16
Table 3-10 Conductor Thickness After Processing 19
Table 3-11 External Conductor Thickness After Plating 19
Table 3-12 Dielectric Withstanding Test Voltages 19
Table 3-13 Insulation Resistance .. 20
Table 4-1 Qualification Testing ... 22
Table 4-2 C=0 Sampling Plan for Equipment Classes per Lot Size .. 24
Table 4-3 Acceptance Testing and Frequency 25
Table 4-4 Quality Conformance Testing 27
Qualification and Performance Specification for Flexible Printed Boards

1 SCOPE
This specification covers qualification and performance requirements of flexible printed wiring. The flexible printed wiring may be single-sided, double-sided, multilayer, or rigid-flex multilayer. All of these constructions may or may not include stiffeners, plated-through holes, and blind/buried vias.

1.1 Purpose The purpose of this specification is to provide requirements for qualification and performance of flexible printed wiring designed to IPC-2221 and IPC-2223.

1.2 Performance Classification, Wiring Type, and Installation Usage

1.2.1 Classification This specification recognizes that flexible printed wiring will be subject to variations in performance requirements based on end-use. These performance classes (Class 1, Class 2, and Class 3) are defined in IPC-6011.

1.2.2 Wiring Type Performance requirements are established for the different types of flexible printed wiring, classified as follows:
Type 1 Single-sided flexible printed wiring containing one conductive layer, with or without stiffeners.
Type 2 Double-sided flexible printed wiring containing two conductive layers with plated-through holes, with or without stiffeners.
Type 3 Multilayer flexible printed wiring containing three or more conductive layers with plated-through holes, with or without stiffeners.
Type 4 Multilayer rigid and flexible material combinations containing three or more conductive layers with plated-through holes.
Type 5 Flexible or rigid-flex printed wiring containing two or more conductive layers without plated-through holes.

1.2.3 Installation Uses
Use A Capable of withstanding flex during installation.
Use B Capable of withstanding continuous flexing for the number of cycles as specified on the procurement documentation.
Use C High temperature environment (over 105 °C [221 °F]).
Use D UL Recognition.

1.2.4 Selection for Procurement For procurement purposes, performance class and installation usage shall be specified in the procurement documentation.

The documentation shall provide sufficient information to the supplier so that the supplier can fabricate the flexible printed wiring and ensure that the user receives the desired product. Information that should be included in the procurement documentation is shown in IPC-D-325.

1.2.4.1 Selection (Default) The procurement documentation should specify the requirements that can be selected within this specification. However, in the event that these selections are not made in the documentation, the following default selections shall apply:
Performance Class – Class 2
Installation Usage – Use A

1.2.5 Material, Plating Process and Final Finish

1.2.5.1 Laminate Material Laminate material is identified by numbers and/or letters, classes and types as specified by the appropriate specification listed in the procurement documentation.

1.2.5.2 Plating Process The copper plating process used to provide the main conductor in the holes is identified by a single number as follows:
1. Acid copper electroplating only.
2. Pyrophosphate copper electroplating only.
3. Acid and/or pyrophosphate copper electroplating.
4. Additive/electroless copper.

1.2.5.3 Final Finish The final finish can be but is not limited to one of the designators given below or a combination of several platings and is dependent on assembly processes and end-use. The procurement documentation shall specify finish designators. Unless otherwise specified, thicknesses given in Table 1-1 shall apply.

<table>
<thead>
<tr>
<th>Designator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Solder Coating (Table 1-1)</td>
</tr>
<tr>
<td>T</td>
<td>Electrodeposited Tin-Lead (fused) (Table 1-1)</td>
</tr>
<tr>
<td>X</td>
<td>Either Type S or T (Table 1-1)</td>
</tr>
<tr>
<td>TLU</td>
<td>Electrodeposited Tin-Lead (unfused) (Table 1-1)</td>
</tr>
<tr>
<td>G</td>
<td>Gold Electroplate for Edge Board Connectors (Table 1-1)</td>
</tr>
<tr>
<td>GS</td>
<td>Gold Electroplate for Areas to be Soldered (Table 1-1)</td>
</tr>
</tbody>
</table>