Sectional Design Standard for High Density Interconnect (HDI) Printed Boards

Developed by the HDI Design Subcommittee (D-41) of the HDI Committee (D-40) of IPC

Users of this standard are encouraged to participate in the development of future revisions.

Contact:

IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
Table of Contents

1 SCOPE ... 1
 1.1 Purpose ... 1
 1.2 Document Hierarchy 1
 1.3 Presentation .. 1
 1.4 Interpretation 1
 1.5 Classification of HDI Types 1
 1.5.1 Core Types 1
 1.5.2 HDI Types (Build-Up Via) 1
 1.6 Via Formation 1
 1.7 Design Features 1

2 APPLICABLE DOCUMENTS 1
 2.1 IPC ... 1
 2.2 Underwriters Laboratories 2

3 GENERAL REQUIREMENTS 2
 3.1 Terms and Definitions 2
 3.1.1 Microvia (Build-Up Via) 2
 3.1.2 Capture Land (Via Top Land) 2
 3.1.3 Target Land (Via Bottom Land) 2
 3.1.4 Stacked Vias 3
 3.1.5 Stacked Microvias 3
 3.1.6 Staggered Vias 3
 3.1.7 Staggered Microvias 3
 3.1.8 Variable Depth Microvia/Via 3
 3.2 Design Tradeoffs 3
 3.3 Design Layout 5
 3.3.1 Design Considerations 5
 3.4 Density Evaluation 5
 3.4.1 Routability Prediction Methods 5
 3.4.2 Design Basics 6

4 MATERIALS .. 8
 4.1 Material Selection 8
 4.1.1 HDI Material Options 8
 4.1.2 Designation System 9
 4.2 Application Levels 11
 4.3 Material Description by Type 11
 4.3.1 Dielectric Materials 11
 4.3.2 Materials for Conductive Paths (In-Plane or Inter-Plane) 11
 4.3.3 Materials with Dielectric and Conductive Functionality 12
 4.4 Copper Foil 12
 4.4.1 Pits, Dents and Pinholes 12

5 ELECTRICAL PROPERTIES 19
 5.1 Equivalent Circuitry 19
 5.2 Final Metal Traces 19
 5.2.1 Inductance and Capacitance 19
 5.2.2 High Frequency Performance 21

6 THERMAL MANAGEMENT 21
 6.1 Thermal Management Concerns for Bump Interconnects on HDI 22
 6.1.1 Junction to Case Thermal Models 23
 6.2 Thermal Flow Management Through HDI Substrate 24

7 COMPONENT AND ASSEMBLY ISSUES 27
 7.1 General Attachment Requirements 27
 7.1.1 Flip Chip Design Considerations 27
 7.1.2 Chip Size Standardization 27
 7.1.3 Bump Site Standards 28
 7.1.4 Bump Options 29
 7.2 Chip Scale Design Considerations 31
 7.2.1 Chip Scale Area Arrays (FBGA and FLGA) 32
 7.2.2 Peripheral Leaded Chip Scale Packages (TSOJ and SOC) 32
 8 COMPONENT AND ASSEMBLY ISSUES .. 32
 8.3 Printed Board Land Pattern Design 32
 8.4 Substrate Structure Standard Grid Evolution 32
 8.4.1 Footprint Design 33
 8.4.2 Design Guide Checklist 33
10 GENERAL CIRCUIT FEATURE REQUIREMENTS ... 41
10.1 Conductor Characteristics .. 41
10.1.1 Balanced Conductors .. 41
10.2 Land Characteristics .. 41
10.3 Determining the Number of Conductors .. 41
10.4 Wiring Factor (Wf) ... 41
10.4.1 Localized Escape Calculations ... 41
10.4.2 Wiring Between Tightly Linked Components 43
10.4.3 Total Wiring Requirements ... 43
10.5 Via and Land Density .. 44
10.6 Trade Off Process .. 44
10.6.1 Wiring Factor Process ... 44
10.6.2 Input/Output (I/O) Variables ... 44

11 DOCUMENTATION ... 45

12 QUALITY ASSURANCE .. 45

Figures

Figure 1-1 Color Key .. 2
Figure 3-1 Staggered Via ... 3
Figure 3-2 Staggered Microvias ... 3
Figure 3-3 Package Size and I/O Count ... 6
Figure 3-4 Feature Pitch and Feature Size Defining Channel Width 6
Figure 3-5 Routing and Via Grid for BGA Package 7
Figure 3-6 Feature Pitch and Conductor Per Channel Combinations 8
Figure 4-1 PCB-HDI/Microvia Substrate (Application H) 11
Figure 4-2 IC Carrier on HDI/Microvia Substrate (Application I) 11
Figure 4-3 BGA Package on MCM-L Substrate Using HDI-PCB Technology (Application I) 11
Figure 5-1 Type I HDI Construction .. 15
Figure 5-2 Type II HDI Construction .. 16
Figure 5-3 Type III HDI Construction (Caution: Unbalanced constructions may result in warp & twist.) 16
Figure 5-4 Type III HDI Construction with Stacked Microvias (Caution: Unbalanced constructions may result in warp & twist) 17
Figure 5-5 Type III HDI Construction with Staggered Microvias (Caution: Unbalanced constructions may result in warp & twist) 17
Figure 5-6 Type III HDI with Variable Depth Blind Vias 17
Figure 5-7 Type IV HDI Construction .. 18
Figure 5-8 Coreless Type V HDI Construction ... 18
Figure 5-9 Type VI Construction ... 18
Figure 6-1 Bump Electrical Path (Redistributed Chip) 20
Figure 6-2 Final Metal Trace and Underlying Traces (Cross Section) 20
Figure 7-1 HDI Thermal Path Relationships ... 22
Figure 7-2 Thermal Management of Chip Scale and Flip Chip Parts Mounted on HDI ... 22
Figure 7-3 Bump Interconnect Equivalent Model 23
Figure 7-4 Wire Bond Example .. 24
Figure 7-5 Approximate Thermal Model for Wire Bond 24
Figure 7-6 Flip Chip Example .. 25
Figure 7-7 Approximate Thermal Model for Flip Chip 25
Figure 7-8 Chip Underfill Example ... 25
Figure 7-9 Approximate Thermal Model for Chip Underfill 25
Figure 7-10 Thermal Paste Example .. 25
Figure 7-11 Approximate Thermal Model for Thermal Paste 26
Figure 7-12 Thermal Resistance ... 26
Figure 7-13 Parallel Resistances ... 26
Figure 8-1 Flip Chip Connection ... 27
Figure 8-2 Mechanical and Electrical Connections 27
Figure 8-3 Joined Chip and Chip Underfill .. 27
Figure 8-4 Example Layouts ... 28
Figure 8-5 Suggested Direct Chip Attach Grid Pitch (250 µm [9,843 µin]; 150 µm [5,906 µin] Bumps) ... 30
Figure 8-6 Type of CSP ... 31
Figure 8-7 Chip Scale Peripheral Package .. 32
Figure 8-8 Printed Board Flip Chip or Grid Array Land Patterns 32
Figure 8-9 MSMT Land Drawing and Dimensions 33
Figure 8-10 Standard Grid Structure .. 34
Figure 8-11 Bump Footprint Planning ... 34
Figure 8-12 Redundant Footprint ... 34
Figure 8-13 Design Shrink Footprint .. 35
Figure 8-14 Signal and Power Distribution Position 35
Figure 8-15 Nested I/O Footprint ... 35
Figure 9-1 Summary of the Manufacturing Processes for PIDs, Laser and Plasma Methods of Via Generation 36
Figure 9-2 Microvia Manufacturing Processes .. 37
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>PCB Design/Performance Tradeoff Checklist</td>
<td>3</td>
</tr>
<tr>
<td>4-1</td>
<td>Sample Dielectric Insulator Designation</td>
<td>9</td>
</tr>
<tr>
<td>4-2</td>
<td>Sample Conductor Designation</td>
<td>9</td>
</tr>
<tr>
<td>4-3</td>
<td>Dielectric with Conductor Designations</td>
<td>9</td>
</tr>
<tr>
<td>5-1</td>
<td>Typical Feature Sizes for HDI Construction, µm [mil]</td>
<td>14</td>
</tr>
<tr>
<td>5-2</td>
<td>Minimum Drilled Hole Size for Plated-Through Hole Vias</td>
<td>15</td>
</tr>
<tr>
<td>6-1</td>
<td>Final Metal Signal Trace (30 µm [1,181 µin])</td>
<td>21</td>
</tr>
<tr>
<td>6-2</td>
<td>Final Metal Power Trace (60 µm [0.00236 in])</td>
<td>21</td>
</tr>
<tr>
<td>6-3</td>
<td>Typical Thermal Resistance for Variable Bump Options (Triple Layer Chip)</td>
<td>23</td>
</tr>
<tr>
<td>6-4</td>
<td>Typical Bump (150 µm) [5,906 µin] Thermal Resistance Multilayer Metal Chips</td>
<td>23</td>
</tr>
<tr>
<td>6-5</td>
<td>Pitch Dimensions</td>
<td>28</td>
</tr>
<tr>
<td>6-6</td>
<td>Examples of Fixed Square Body Size Showing Maximum I/O Capability</td>
<td>29</td>
</tr>
<tr>
<td>6-7</td>
<td>Example of Fixed Rectangular Body Size</td>
<td>30</td>
</tr>
<tr>
<td>6-8</td>
<td>Bump Diameter and Minimum Pitch Options</td>
<td>30</td>
</tr>
<tr>
<td>6-9</td>
<td>Chip Edge Seal Dimensions (Typical)</td>
<td>33</td>
</tr>
<tr>
<td>6-10</td>
<td>Number of Conductors for Gridded Router When Feature Pitch is 2,500 µm [98,425 µin]</td>
<td>42</td>
</tr>
<tr>
<td>6-11</td>
<td>Number of Conductors for Gridded Router When Feature Pitch is 1,250 µm [49,213 µin]</td>
<td>42</td>
</tr>
<tr>
<td>6-12</td>
<td>Number of Conductors for Gridded Router When Feature Pitch is 650 µm [25,591 µin]</td>
<td>42</td>
</tr>
<tr>
<td>6-13</td>
<td>Number of Conductors for Gridded Router When Feature Pitch is 500 µm [19,685 µin]</td>
<td>42</td>
</tr>
<tr>
<td>6-14</td>
<td>Number of Conductors for Gridded Router When Feature Pitch is 250 µm [9,843 µin]</td>
<td>43</td>
</tr>
<tr>
<td>6-15</td>
<td>Number of Conductors for Gridded Router When Feature Pitch is 250 µm [9,843 µin]</td>
<td>43</td>
</tr>
<tr>
<td>6-16</td>
<td>Number of Conductors for Gridded Router When Feature Pitch is 250 µm [9,843 µin]</td>
<td>43</td>
</tr>
<tr>
<td>6-17</td>
<td>Number of Conductors for Gridded Router When Feature Pitch is 250 µm [9,843 µin]</td>
<td>43</td>
</tr>
<tr>
<td>6-18</td>
<td>Number of Conductors for Gridded Router When Feature Pitch is 250 µm [9,843 µin]</td>
<td>43</td>
</tr>
<tr>
<td>6-19</td>
<td>Number of Conductors for Gridded Router When Feature Pitch is 250 µm [9,843 µin]</td>
<td>43</td>
</tr>
<tr>
<td>6-20</td>
<td>Number of Conductors for Gridded Router When Feature Pitch is 250 µm [9,843 µin]</td>
<td>43</td>
</tr>
<tr>
<td>6-21</td>
<td>Number of Conductors for Gridded Router When Feature Pitch is 250 µm [9,843 µin]</td>
<td>43</td>
</tr>
<tr>
<td>6-22</td>
<td>Number of Conductors for Gridded Router When Feature Pitch is 250 µm [9,843 µin]</td>
<td>43</td>
</tr>
</tbody>
</table>
1 SCOPE
This standard establishes requirements and considerations for the design of organic and inorganic high density interconnect (HDI) printed boards and its forms of component mounting and interconnecting structures.

1.1 Purpose The requirements contained herein are intended to establish design principles and recommendations that shall be used in conjunction with the detailed requirements of IPC-2221. In addition, when the core material reflects requirements identified in the sectional standards (IPC-2222, IPC-2223, IPC-2224 and IPC-2225), that information becomes a mandatory part of this standard.

The standard provides recommendations for signal, power, ground and mixed distribution layers, dielectric separation, via formation and metallization requirements and other design features that are necessary for HDI-advanced IC interconnection substrates. Included are trade-off analyses required to match the mounting structure to the selected chip set.

1.2 Document Hierarchy Document hierarchy shall be in accordance with the generic standard IPC-2221.

1.3 Presentation All dimensions and tolerances in this standard are represented in SI (metric) units with Imperial units following as a hard conversion for reference only (e.g., 0.01 cm [0.0039 in]).

1.4 Interpretation Interpretation shall be in accordance with the generic standard IPC-2221.

1.5 Classification of HDI Types Classification shall be by category in accordance with the requirements based on end use and as stated in 1.5.1 and 1.5.2 of this standard.

1.5.1 Core Types When HDI products utilize core interconnections, the core type(s) and their materials shall be in accordance with IPC-2222 for rigid and IPC-2223 for flexible core interconnections. For passive or constraining core boards the materials shall be in accordance with IPC-2221.

1.5.2 HDI Types The design designation system of this standard recognizes the six industry approved design types (see 5.2) used in the manufacture of HDI printed boards. The designations in this section determine the HDI design type by defining the number and location of HDI layers that may or may not be combined with a substrate (core [C] or passive [P]).

For instance, an HDI printed board with two layers of HDI on one side of the core and one layer of HDI on the other side of the core would be 2 [C] 1.

The following definitions apply to all forms of HDI.

TYPE I 1 [C] 0 or 1 [C] 1 - with through vias connecting the outer layers (see 5.2.1).

TYPE II 1 [C] 0 or 1 [C] 1 - with buried vias in the core and may have through vias connecting the outer layers (see 5.2.2).

TYPE III ≥2 [C] ≥0 - may have buried vias in the core and may have through vias connecting the outer layers (see 5.2.3).

TYPE IV ≥1 [P] ≥0 - where P is a passive substrate with no electrical connection (see 5.2.4).

TYPE V Coreless constructions using layer pairs (see 5.2.5).

TYPE VI Alternate constructions (see 5.2.6).

1.6 Via Formation Via formation may be different from that considered in IPC-2221 since additional methods for via formation, in addition to drilled vias, will be used. The methods for via formation, lamination/coating and sequential layer process are covered in 9.1.1.

1.7 Design Features Figure 1-1 provides a color key to be used with all of the figures within this standard.

2 APPLICABLE DOCUMENTS
The following documents form a mandatory part of this standard and all requirements stated therein apply, unless modified in the section where they are invoked.

The revision of the document in effect at the time of solicitation shall take precedence over the applicable section of this document.

2.1 IPC

IPC-T-50 Terms and Definitions for Interconnecting and Packaging Electronic Circuits

1. www.ipc.org