Sectional Design Standard for Flexible Printed Boards

Developed by the Flexible Circuits Design Subcommittee (D-11) of the Flexible Circuits Committee (D-10) of IPC

Supersedes:
IPC-2223 - November 1998
IPC-D-249 - January 1987

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
Table of Contents

1 SCOPE ... 1
 1.1 Purpose ... 1
 1.2 Classification of Products ... 1
 1.2.1 Board Type .. 1
 1.2.2 Installation Uses .. 1
 1.3 Revision Level Changes .. 2
2 APPLICABLE DOCUMENTS ... 2
 2.1 IPC ... 2
3 GENERAL REQUIREMENTS .. 2
 3.1 Design Modeling ... 2
 3.2 Design Layout .. 2
 3.2.1 Mechanical Layout Efficiency (Consider Final Panelization) .. 3
 3.2.2 Fabrication Drawing Recommendations 3
 3.3 Schematic .. 3
 3.4 Test Requirement Considerations 3
 3.4.1 Environmental .. 3
 3.4.2 Mechanical/Flexural .. 3
4 MATERIALS .. 3
 4.1 Material Selection .. 3
 4.1.1 Material Options ... 3
 4.2 Dielectric Materials (Including Prepreg and Adhesives) 4
 4.2.1 Preimpregnated Bonding Material (Prepreg) 4
 4.2.2 Adhesives (Liquid) .. 4
 4.2.3 Flexible Adhesive Bonding Films (Cast Adhesive or Bondply) ... 4
 4.2.4 Conductive Anisotropic Adhesives 5
 4.2.5 Coverlayer .. 5
 4.3 Conductive Materials (Surface Finishes) 6
 4.3.1 Electrolytic Copper Plating 6
 4.3.2 Nickel .. 7
 4.3.3 Tin-Lead Plating .. 7
 4.3.4 Solder Coating ... 7
 4.3.5 Other Metallic Coatings .. 7
 4.3.6 Electronic Component Materials (Buried Resistors and Capacitors) ... 7
 4.3.7 Conductive Coatings for Shielding 7
 4.4 Organic Protective Coatings 7
 4.4.1 Solder Resist ... 7
 4.4.2 Conformal Coating ... 7
 4.5 Marking and Legend .. 7
5 MECHANICAL AND PHYSICAL PROPERTIES 8
 5.1 Fabrication Requirements .. 8
 5.1.1 Bare Board Fabrication .. 8
 5.1.2 Roll to Roll Fabrication .. 8
 5.2 Product/Board Configuration 8
 5.2.1 Circuit Profile (Outline) .. 8
 5.2.2 Rigid Area Considerations 9
 5.2.3 Flexible Areas ... 9
 5.2.4 Preforming Bend .. 12
 5.2.5 Differential Lengths ... 13
 5.2.6 Shielding ... 15
 5.2.7 Ground/Power Plane ... 15
 5.2.8 Stiffeners and Heat Sinks 15
 5.2.9 Fillets (Strain Relief) .. 16
 5.3 Assembly Requirements .. 16
 5.3.1 Mechanical Considerations 16
 5.3.2 Palletized Flexible and Rigid Flex Printed Wiring 16
 5.3.3 Nonpalletized Flexible and Rigid Flex Printed Wiring ... 16
 5.3.4 Moisture .. 16
 5.3.5 Infrared Preheats and Reflow 16
 5.3.6 Adhesive Tg ... 16
 5.4 Dimensioning ... 16
 5.4.1 Datum Features ... 17
6 ELECTRICAL PROPERTIES .. 17
 6.1 Electrical Considerations ... 17
 6.2 Impedance and Capacitance Control 17
7 THERMAL MANAGEMENT ... 17
8 COMPONENT AND ASSEMBLY ISSUES 17
 8.1 General Placement Requirements 17
 8.2 Standard Surface Mount Requirements 17
 8.3 Lands for Surface Mounting 17
 8.4 Constraints on Mounting to Flexible Sections 17
 8.5 Interfacial Connections .. 18
 8.6 Offset Lands .. 18
9 HOLES/INTERCONNECTIONS ... 18
 9.1 General Requirements for Lands with Holes 18
 9.1.1 Land Requirements ... 18
 9.1.2 Annular Ring Requirements 18
 9.1.3 Eyelet or Standoff Land Area Considerations 18
1 SCOPE

This standard establishes the specific requirements for the design of flexible printed circuit applications and its forms of component mounting and interconnecting structures. The flexible materials used in the structures are comprised of insulating films, reinforced and/or nonreinforced, dielectric in combination with metallic materials. These interconnecting boards may contain single, double, multilayer, or multiple conductive layers and can be comprised wholly of flex or a combination of both flex and rigid.

1.1 Purpose The requirements contained herein are intended to establish specific design details that shall be used in conjunction with IPC-2221 and may also be used in conjunction with IPC-2222 for the rigid sections of rigid-flex circuits.

1.2 Classification of Products Classification type and use of products shall be in accordance with IPC-2221 and as stated in 1.2.1 and 1.2.2.

1.2.1 Board Type

Type 1 Single-sided flexible printed wiring containing one conductive layer, with or without stiffener (see Figure 1-1).

Type 2 Double-sided flexible printed wiring containing two conductive layers with plated-through holes, with or without stiffeners (see Figure 1-2).

Type 3 Multilayer flexible printed wiring containing three or more conductive layers with plated-through holes, with or without stiffeners (see Figure 1-3).

Type 4 Multilayer rigid and flexible material combinations containing three or more conductive layers with plated-through holes (see Figure 1-4).

Type 5 Flexible or rigid-flex printed wiring containing two or more conductive layers without plated-through holes (see Figure 1-5).

1.2.2 Installation Uses Flexible circuit designs are unique in each application; however, the following are some typical classes of use. It is recommended that the intended use be specified on the fabrication drawing. It may be necessary to define specific tests for design verification on the master drawing. These categories can be used individually or in a combination.

Use A Capable of withstanding flex during installation (flex-to-install) (see 5.2.3.2).

Use B Capable of withstanding continuous flexing for the number of cycles as specified on the master drawing (dynamic flex) (see 5.2.3.2).