Generic Standard on Printed Board Design

Developed by the IPC-2221 Task Group (D-31b) of the Rigid Printed Board Committee (D-30) of IPC

Supersedes:
IPC-2221 - February 1998

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
FOREWORD

This standard is intended to provide information on the generic requirements for organic printed board design. All aspects and details of the design requirements are addressed to the extent that they can be applied to the broad spectrum of those designs that use organic materials or organic materials in combination with inorganic materials (metal, glass, ceramic, etc.) to provide the structure for mounting and interconnecting electronic, electromechanical, and mechanical components. It is crucial that a decision pertaining to the choice of product types be made as early as possible. Once a component mounting and interconnecting technology has been selected the user should obtain the sectional document that provides the specific focus on the chosen technology.

It may be more effective to consider alternative printed board construction types for the product being designed. As an example the application of a rigid-flex printed wiring board may be more cost or performance effective than using multiple printed wiring boards, connectors and cables.

IPC’s documentation strategy is to provide distinct documents that focus on specific aspect of electronic packaging issues. In this regard document sets are used to provide the total information related to a particular electronic packaging topic. A document set is identified by a four digit number that ends in zero (0).

Included in the set is the generic information which is contained in the first document of the set and identified by the four digit set number. The generic standard is supplemented by one or many sectional documents each of which provide specific focus on one aspect of the topic or the technology selected. The user needs, as a minimum, the generic design document, the sectional of the chosen technology, and the engineering description of the final product.

As technology changes specific focus standards will be updated, or new focus standards added to the document set. The IPC invites input on the effectiveness of the documentation and encourages user response through completion of “Suggestions for Improvement” forms located at the end of each document.
Table of Contents

1 SCOPE .. 1
1.1 Purpose ... 1
1.2 Documentation Hierarchy ... 1
1.3 Presentation ... 1
1.4 Interpretation ... 1
1.5 Definition of Terms ... 1
1.6 Classification of Products ... 1
1.6.1 Board Type ... 1
1.6.2 Performance Classes .. 1
1.6.3 Producibility Level ... 2
1.7 Revision Level Changes ... 2

2 APPLICABLE DOCUMENTS ... 2
2.1 IPC .. 2
2.2 Joint Industry Standards ... 3
2.3 Society of Automotive Engineers 3
2.4 American Society for Testing and Materials 3
2.5 Underwriters Labs .. 3
2.6 IEEE ... 3
2.7 ANSI .. 4

3 GENERAL REQUIREMENTS ... 4
3.1 Information Hierarchy .. 6
3.1.1 Order of Precedence ... 6
3.2 Design Layout .. 6
3.2.1 End-Product Requirements 6
3.2.2 Density Evaluation .. 6
3.3 Schematic/Logic Diagram 6
3.4 Parts List ... 6
3.5 Test Requirement Considerations 7
3.5.1 Printed Board Assembly Testability 7
3.5.2 Boundary Scan Testing 8
3.5.3 Functional Test Concern for Printed Board Assemblies 8
3.5.4 In-Circuit Test Concerns for Printed Board Assemblies 10
3.5.5 Mechanical ... 12
3.5.6 Electrical .. 12
3.6 Layout Evaluation .. 13
3.6.1 Board Layout Design ... 13
3.6.2 Feasibility Density Evaluation 13
3.7 Performance Requirements 15

4 MATERIALS ... 17
4.1 Material Selection ... 17
4.1.1 Material Selection for Structural Strength 17
4.1.2 Material Selection for Electrical Properties 17
4.1.3 Material Selection for Environmental Properties .. 17
4.2 Dielectric Base Materials (Including Prepregs and Adhesives) .. 17
4.2.1 Preimpregnated Bonding Layer (Prepreg) 17
4.2.2 Adhesives .. 17
4.2.3 Adhesive Films or Sheets 19
4.2.4 Electrically Conductive Adhesives 19
4.2.5 Thermally Conductive/Electrically Insulating Adhesives ... 19
4.2.6 Composite (Constraining-Core) Boards 27
4.2.7 Soldering Adhesive ... 27
4.2.8 Other Metallic Coatings for Edgeboard Contacts .. 23
4.2.9 Metallic Foil/Film ... 23
4.2.10 Electronic Component Materials 23
4.3 Electrical .. 20
4.3.1 Color Pigmentation .. 20
4.3.2 Dielectric Thickness/Spacing 20
4.4 Conductive Materials ... 20
4.4.1 Electroless Copper Plating 20
4.4.2 Semiconductive Coatings 20
4.4.3 Electrolytic Copper Plating 20
4.4.4 Gold Plating ... 20
4.4.5 Nickel Plating ... 22
4.4.6 Tin/Lead Plating ... 22
4.4.7 Soldering Coating ... 22
4.4.8 Other Metallic Coatings for Edgeboard Contacts .. 23
4.4.9 Metallic Foil/Film ... 23
4.4.10 Electronic Component Materials 23
4.4.11 Insulating Adhesives .. 19
4.4.12 Prepregs and Adhesives 17

5 MECHANICAL/PHYSICAL PROPERTIES 26
5.1 Fabrication Considerations 26
5.1.1 Fabrication Considerations 26
5.2 Product/Board Configuration 26
5.2.1 Board Type ... 26
5.2.2 Board Size .. 26
5.2.3 Board Geometries (Size and Shape) 26
5.2.4 Bow and Twist ... 27
5.2.5 Structural Strength .. 27
5.2.6 Composite (Constraining-Core) Boards 27
5.2.7 Vibration Design ... 29
6 ELECTRICAL PROPERTIES ... 37
6.1 Electrical Considerations 37
6.1.1 Electrical Performance 37
6.1.2 Power Distribution Considerations 37
6.1.3 Circuit Type Considerations 39
6.2 Conductive Material Requirements 40
6.3 Electrical Clearance ... 42
6.3.1 B1–Internal Conductors 42
6.3.2 B2–External Conductors, Uncoated, Sea Level to 3050 m [10,007 feet] 42
6.3.3 B3–External Conductors, Uncoated, Over 3050 m [10,007 feet] 42
6.3.4 B4–External Conductors, with Permanent Polymer Coating (Any Elevation) 42
6.3.5 A5–External Conductors, with Conformal Coating Over Assembly (Any Elevation) ... 43
6.3.6 A6–External Component Lead/Termination, Uncoated, Sea Level to 3050 m [10,007 feet] 43
6.3.7 A7–External Component Lead/Termination, with Conformal Coating (Any Elevation) ... 43
6.4 Impedance Controls ... 43
6.4.1 Microstrip .. 44
6.4.2 Embedded Microstrip 44
6.4.3 Stripline Properties 44
6.4.4 Asymmetric Stripline Properties 46
6.4.5 Capacitance Considerations 46
6.4.6 Inductance Considerations 47

7 THERMAL MANAGEMENT ... 48
7.1 Cooling Mechanisms ... 48
7.1.1 Conduction .. 49
7.1.2 Radiation ... 49
7.1.3 Convection ... 49
7.1.4 Altitude Effects .. 49
7.2 Heat Dissipation Considerations 49
7.2.1 Individual Component Heat Dissipation 49
7.2.2 Thermal Management Considerations for Board Heatsinks 50
7.2.3 Assembly of Heatsinks to Boards 50
7.2.4 Special Design Considerations for SMT Board Heatsinks 50
7.3 Heat Transfer Techniques 52
7.3.1 Coefficient of Thermal Expansion (CTE) Characteristics 52
7.3.2 Thermal Transfer .. 53
7.3.3 Thermal Matching 53
7.4 Thermal Design Reliability 53

8 COMPONENT AND ASSEMBLY ISSUES 55
8.1 General Placement Requirements 55
8.1.1 Automatic Assembly 55
8.1.2 Component Placement 55
8.1.3 Orientation ... 57
8.1.4 Accessibility .. 57
8.1.5 Design Envelope ... 57
8.1.6 Component Body Centering 57
8.1.7 Mounting Over Conductive Areas 57
8.1.8 Clearances ... 58
8.1.9 Physical Support ... 58
8.1.10 Heat Dissipation .. 59
8.1.11 Stress Relief ... 60
8.1.12 General Attachment Requirements 60
8.2 General Relief .. 60
8.2.1 Through-Hole ... 60
8.2.2 Surface Mounting 60
8.2.3 Mixed Assemblies .. 61
8.2.4 Soldering Considerations 61
8.2.5 Connectors and Interconnects 62
8.2.6 Fastening Hardware 63
8.2.7 Stiffeners .. 64
8.2.8 Lands for Flattened Round Leads 64
8.2.9 Solder Terminals .. 64
8.2.10 Eyelets .. 65
8.2.11 Special Wiring .. 65
8.2.12 Heat Shrinkable Devices 67
8.2.13 Bus Bar .. 67
8.2.14 Flexible Cable .. 67
8.2.15 Flexible Cable .. 67
8.3 Through-Hole Requirements 67
8.3.1 Leads Mounted in Through-Holes 67
8.4 Standard Surface Mount Requirements 71
8.4.1 Surface-Mounted Leaded Components 71
8.4.2 Flat-Pack Components 71
8.4.3 Ribbon Lead Termination 72
8.4.4 Round Lead Termination 72
8.4.5 Component Lead Sockets 72
8.5 Fine Pitch SMT (Peripherals) 72
8.6 Bare Die ... 73
1 SCOPE
This standard establishes the generic requirements for the design of organic printed boards and other forms of component mounting or interconnecting structures. The organic materials may be homogeneous, reinforced, or used in combination with inorganic materials; the interconnections may be single, double, or multilayered.

1.1 Purpose The requirements contained herein are intended to establish design principles and recommendations that shall be used in conjunction with the detailed requirements of a specific interconnecting structure sectional standard (see 1.2) to produce detailed designs intended to mount and attach passive and active components. This standard is not intended for use as a performance specification for finished boards nor as an acceptance document for electronic assemblies. For acceptability requirements of electronic assemblies, see IPC/EIA-J-STD-001 and IPC-A-610.

The components may be through-hole, surface mount, fine pitch, ultra-fine pitch, array mounting or unpackaged bare die. The materials may be any combination able to perform the physical, thermal, environmental, and electronic function.

1.2 Documentation Hierarchy This standard identifies the generic physical design principles, and is supplemented by various sectional documents that provide details and sharper focus on specific aspects of printed board technology. Examples are:

- IPC-2222 Rigid organic printed board structure design
- IPC-2223 Flexible printed board structure design
- IPC-2224 Organic, PC card format, printed board structure design
- IPC-2225 Organic, MCM-L, printed board structure design
- IPC-2226 High Density Interconnect (HDI) structure design
- IPC-2227 Embedded Passive Devices printed board design (In Process)

The list is a partial summary and is not inherently a part of this generic standard. The documents are a part of the PCB Design Document Set which is identified as IPC-2220. The number IPC-2220 is for ordering purposes only and will include all documents which are a part of the set, whether released or in-process proposal format at the time the order is placed.

1.3 Presentation All dimensions and tolerances in this standard are expressed in hard SI (metric) units and paren-thetical soft imperial (inch) units. Users of this and the corresponding performance and qualification specifications are expected to use metric dimensions.

1.4 Interpretation “Shall,” the imperative form of the verb, is used throughout this standard whenever a requirement is intended to express a provision that is mandatory. Deviation from a “shall” requirement may be considered if sufficient data is supplied to justify the exception.

The words “should” and “may” are used whenever it is necessary to express nonmandatory provisions. “Will” is used to express a declaration of purpose.

To assist the reader, the word “shall” is presented in bold characters.

1.5 Definition of Terms The definition of all terms used herein shall be as specified in IPC-T-50.

1.6 Classification of Products This standard recognizes that rigid printed boards and printed board assemblies are subject to classifications by intended end item use. Classification of producibility is related to complexity of the design and the precision required to produce the particular printed board or printed board assembly.

Any producibility level or producibility design characteristic may be applied to any end-product equipment category. Therefore, a high-reliability product designated as Class “3” (see 1.6.2), could require level “A” design complexity (preferred producibility) for many of the attributes of the printed board or printed board assembly (see 1.6.3).

1.6.1 Board Type This standard provides design information for different board types. Board types vary per technology and are thus classified in the design sectionals.

1.6.2 Performance Classes Three general end-product classes have been established to reflect progressive increases in sophistication, functional performance requirements and testing/inspection frequency. It should be recognized that there may be an overlap of equipment between classes. The printed board user has the responsibility to determine the class to which his product belongs. The contract shall specify the performance class required and indicate any exceptions to specific parameters, where appropriate.

Class I General Electronic Products Includes consumer products, some computer and computer peripherals, as well as general military hardware suitable for applications where cosmetic imperfections are not important and the