Selection and Application of Board Level Underfill Materials

Developed by the Underfill Materials Design, Selection and Process Task Group (5-24f) of the Assembly and Joining Committee (5-20) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, IL 60015-1249
Phone (847) 615-7100
Fax (847) 615-7105
Table of Contents

1 SCOPE ... 1
1.1 Introduction .. 1
1.2 Purpose ... 1
1.3 Definition of Requirements 1

2 APPLICABLE DOCUMENTS 2
2.1 IPC ... 2
2.2 American Society for Testing and Materials (ASTM) 2
2.3 Telcordia Technologies, Inc. 2

3 TERMS AND DEFINITIONS 2

4 BACKGROUND ... 3
4.1 Why Is Underfill Needed? 3
4.2 Types of Underfill 4
4.2.1 Capillary Underfill 4
4.2.2 Fluxing (No-Flow) Encapsulant 4
4.2.3 Removable/Reworkable Underfill 5
4.2.4 Cornerbond Adhesive (Dispensed or Placed Prior to Reflow Process) 5
4.2.5 Corner Glue/Crner Tack Underfills (Applied After SMT Reflow) 5

5 MECHANICAL CONSIDERATIONS 6
5.1 Footprint Design 6
5.2 Gap Size .. 7
5.3 Pad Redistribution 7

6 UNCURSED UNDERFILL CHARACTERISTICS 7
6.1 Filler Properties 7
6.1.1 Filler Size ... 7
6.1.2 Filler Material Type 8
6.1.3 Filler Content 8
6.1.4 Density ... 8
6.2 Prepolymer Properties 8
6.2.1 Viscosity ... 8
6.2.2 Gel Time ... 8
6.3 Material Compatibility 8
6.3.1 Flux Compatibility 8
6.3.2 Board Surface Compatibility 9
6.3.3 Component Surface Compatibility 9
6.4 Alpha Particle Emissions 9

7 MATERIALS PACKAGING, HANDLING, AND STORAGE 10
7.1 Packaging and Containers 10
7.1.1 Voids/Bubbles in Packed Material 10
7.2 Storage Conditions 10
7.3 Preconditioning 11
7.4 Pot Life ... 11
7.4.1 Viscosity Change 11
7.4.2 Flow Rate Change 11
7.4.3 Settling Test ... 11

8 APPLICATION PROCESS 11
8.1 Pre-Application Board Preparation 12
8.2 Application of Capillary Flow Underfill 12
8.2.1 Dispensing Procedures 13
8.2.1.1 Dispensing Patterns 13
8.2.1.2 Process Parameters 14
8.2.2 Application Problems 14
8.2.2.1 Air Entrapment 14
8.2.2.2 Gravitational Phase Separation 14
8.2.2.3 Dynamic Phase Separation 15
8.2.2.4 Filtering Phase Separation 15
8.3 Application of No-Flow/Fluxing Underfill 15
8.3.1 Dispensing Pattern 15
8.3.2 Dispense Volume 15
8.3.3 Package Placement 15
8.3.4 Application Problems 16
8.4 Flow Rate ... 16
8.4.1 Dispense Flow Rate Measurement 16
8.4.2 Underfill Flow Rate 16
8.4.3 Flow Out and Bleed 16
8.4.3.1 Flow Out and Bleed 16
8.5 Spread/Slump .. 17
8.6 Evaluation Methodology 17
8.6.1 Acoustic Micro-Imaging 17
8.6.2 Destructive Tests for Voiding 17
8.6.3 Assembly to Glass for Flow Visualization 18
8.7 Pot Life (In Dispenser) 18

9 CURE PROCESS .. 18
9.1 Applied Life (After Dispensing) 18
9.2 Cure Process for Capillary Flow Underfill 19
9.2.1 Process Parameters 19
9.2.2 Cure Schedule 19
9.2.3 Heating Rate 19
9.2.4 Temperature Sensitivity 19
9.3 Cure Process for No-Flow Underfill 19
9.4 Void Formation/Outgassing 20
9.5 Cure Verification 20
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 CURED UNDERFILL CHARACTERISTICS</td>
<td>20</td>
</tr>
<tr>
<td>10.1 Appearance</td>
<td>20</td>
</tr>
<tr>
<td>10.1.1 Fillet Formation</td>
<td>20</td>
</tr>
<tr>
<td>10.1.2 Color (Dye/Pigment)</td>
<td>20</td>
</tr>
<tr>
<td>10.2 Adhesion</td>
<td>21</td>
</tr>
<tr>
<td>10.3 Shrinkage and Induced Stress</td>
<td>21</td>
</tr>
<tr>
<td>10.4 Young’s Modulus</td>
<td>21</td>
</tr>
<tr>
<td>10.5 Coefficient of Thermal Expansion (CTE)</td>
<td>21</td>
</tr>
<tr>
<td>10.6 Glass Transition Temperature (Tg)</td>
<td>21</td>
</tr>
<tr>
<td>10.7 Chemical Stability</td>
<td>21</td>
</tr>
<tr>
<td>10.7.1 Determining Resistance to Solvents</td>
<td>21</td>
</tr>
<tr>
<td>10.8 Moisture Absorption</td>
<td>22</td>
</tr>
<tr>
<td>10.9 Hydrolytic Stability</td>
<td>22</td>
</tr>
<tr>
<td>10.10 Non-Nutrient</td>
<td>22</td>
</tr>
<tr>
<td>10.11 Surface Insulation Resistance</td>
<td>22</td>
</tr>
<tr>
<td>10.12 Electrochemical Migration Resistance</td>
<td>23</td>
</tr>
<tr>
<td>10.13 Volume Resistivity</td>
<td>23</td>
</tr>
<tr>
<td>10.14 Permittivity (Dielectric Constant)</td>
<td>23</td>
</tr>
<tr>
<td>11 WORKMANSHIP</td>
<td>24</td>
</tr>
<tr>
<td>11.1 Substrate Preparation</td>
<td>24</td>
</tr>
<tr>
<td>11.2 Cleaning Before Underfill</td>
<td>24</td>
</tr>
<tr>
<td>11.3 Cleaning After Cure</td>
<td>24</td>
</tr>
<tr>
<td>12 PROCESS RELIABILITY ASSESSMENT</td>
<td>24</td>
</tr>
<tr>
<td>12.1 Ionic Content</td>
<td>24</td>
</tr>
<tr>
<td>12.2 Chemical Resistance</td>
<td>24</td>
</tr>
<tr>
<td>12.3 Mechanical Integrity</td>
<td>24</td>
</tr>
<tr>
<td>12.5 Post Soldering Processes (Capillary Underfill)</td>
<td>24</td>
</tr>
<tr>
<td>12.6 Temperature Cycling</td>
<td>25</td>
</tr>
<tr>
<td>13 OTHER CONSIDERATIONS</td>
<td>26</td>
</tr>
<tr>
<td>13.1 Reworkability</td>
<td>26</td>
</tr>
<tr>
<td>13.1.1 Rework of Adjacent Components</td>
<td>26</td>
</tr>
<tr>
<td>13.2 Determination of Cure</td>
<td>26</td>
</tr>
<tr>
<td>13.3 Thermal Management</td>
<td>26</td>
</tr>
<tr>
<td>13.4 Workmanship Standards for BGA and CSP Board Level Underfills</td>
<td>27</td>
</tr>
<tr>
<td>13.4.1 Visual Criteria</td>
<td>27</td>
</tr>
<tr>
<td>13.4.2 Underfill Voiding Under Devices</td>
<td>28</td>
</tr>
<tr>
<td>13.5 Destructive Inspection</td>
<td>29</td>
</tr>
<tr>
<td>13.6 General Overview of Voiding Conditions and Reliability Impact/Factors</td>
<td>29</td>
</tr>
<tr>
<td>13.7 Workmanship Guidelines for Corner or Edge Bond Underfills</td>
<td>29</td>
</tr>
<tr>
<td>14 TROUBLESHOOTING</td>
<td>30</td>
</tr>
<tr>
<td>14.1 Inadequate Flow</td>
<td>30</td>
</tr>
<tr>
<td>14.1.1 Viscosity</td>
<td>30</td>
</tr>
<tr>
<td>14.1.2 Wetting</td>
<td>30</td>
</tr>
<tr>
<td>14.1.3 Mechanical Blockage</td>
<td>30</td>
</tr>
<tr>
<td>14.2 Phase Separation</td>
<td>30</td>
</tr>
<tr>
<td>14.3 Voids</td>
<td>30</td>
</tr>
<tr>
<td>14.3.1 Voids Before Cure</td>
<td>30</td>
</tr>
<tr>
<td>14.3.2 Voids After Cure</td>
<td>30</td>
</tr>
<tr>
<td>14.4 Inadequate Cure</td>
<td>30</td>
</tr>
<tr>
<td>14.5 Poor Adhesion</td>
<td>31</td>
</tr>
<tr>
<td>14.6 Thermal Cycle Failure</td>
<td>31</td>
</tr>
</tbody>
</table>

Figures

- Figure 1-1 Comparison of Various Sized Array Packages
- Figure 4-1 Both the Flip-Chip and CSP Underfill in a Flip-Chip CSP Soldered to a PCA
- Figure 4-2 Different Material Coverage Types for Top and X-Sec View (Underfill, Corner Glue, Epoxy Flux)
- Figure 4-3 Example of Epoxy Chemical Reaction
- Figure 4-4 Image of Needle Dispensing of an Underfill (Bottom Side View)
- Figure 4-5 Fluxing Underfill Process
- Figure 4-6 Reflow Cured Corner Bond Process
- Figure 4-7 Thermally and UV Cured Corner Tacks
- Figure 6-1 SEM Image Showing Poor Underfill Adhesion to a Bump Due to Flux Residue
- Figure 8-1 Fluxing Underfill
- Figure 8-2 Underfill Dispensing
- Figure 8-3 Examples of Dispensing Patterns (The Fillet is Shown in a Different Color for Clarity Only)
- Figure 8-4 Image Showing Both Needle Dispensing and Jetting for Underfilling at the Chip Level
- Figure 8-5 Air Entrapment (Underfill was Dispensed on the Left Edge of the Package)
- Figure 8-6 Gravitational Phase Separation
1 SCOPE
This document provides users of underfill material with guidance in selecting and evaluating underfill material for assembly solder joints second level interconnects. Underfill material is used to increase reliability of electronic devices by two methods: alleviate coefficient of thermal expansion (CTE) mismatch (between the electronic package and the assembly substrate) and/or increase mechanical strength. Underfill materials are also used for environmental protection, mechanical shock or vibration, and anti-tampering uses. Materials used in underfill applications should not adversely affect device reliability nor degrade electrical performance (e.g., ionic impurities). When correctly selected and applied, underfill material should increase the life of the assembly solder joints.

Types of underfill materials currently available in the market include:

• Capillary Flow Underfill
 – Primary UFs (Package level not within the scope of this document)
 – Secondary (Board level)
• No-Flow/Fluxing Underfill
 – Thermal Compression Bonding (TCB) Epoxies (not within the scope of this document)
 – Non-Conductive Paste (NCP)
 – Non-Conductive Film (NCF)
• Removable/Re-Workable Underfill
• Corner Bonding/Glue Bonding
• Molded Underfill (not within scope of document)
• Wafer Applied Underfill (not within scope of document)
• Vacuum Underfill (not within scope of document)

1.1 Introduction This document covers polymer based underfill materials intended for use in printed circuit assemblies (PCA). (See Figure 1-1.)

1.2 Purpose The purpose of this document is to help in identifying underfill materials whose properties are compatible with component assembly joints to reduce thermo mechanical stress so that performance of the assembly is enhanced. The additional role of underfill is protecting the device from environmental factors and increasing strength. Evaluation methods are provided in the document that are intended to be used for assessing underfill material performance in specific applications as well as troubleshooting failures. This document represents the compiled knowledge and experience of the IPC Underfill Adhesives for Flip Chip Applications Task Group.

1.3 Definition of Requirements The word “shall” is used in the text of this document wherever there is a requirement for materials, preparation, process control, or acceptance of a soldered connection or a test method. The word “should” reflects “best processing techniques” and is used to reflect general industry practices and a suggestion for guidance only.