JOINT INDUSTRY STANDARD

IMPLEMENTATION of BALL GRID ARRAY and other HIGH DENSITY TECHNOLOGY

COORDINATED BY THE SURFACE MOUNT COUNCIL
About this Document

This document is intended to report on the work being done by a variety of organizations concerned with surface mounting of area array packages or other high pin count package configurations. The details were developed by companies who have implemented the processes described herein and have agreed to share their experiences. Readers are encouraged to communicate to the appropriate trade association any comments or observations regarding details published in this document, or provide additional ideas and details that would serve the industry.

Section 8 of this document represents a listing of standards that are being developed, being updated, or need to be created in order to provide for the orderly implementation of Ball Grid Array, or other High-Density Technology. Members of the industry are invited to participate in the ongoing standardization process.

For additional information regarding material published herein or inquiries regarding the status of standardization activities, we urge you to contact the organization listed below.

IPC
The Institute for Interconnecting and Packaging Electronic Circuits
2215 Sanders Road
Northbrook, IL 60062-6135
Telephone: (847) 509-9700
Fax: (847) 509-9798

EIA
Electronic Industries Association
2500 Wilson Blvd.
Arlington, VA 22201-3834
Telephone: (703) 907-7552
Fax: (703) 907-7501
Table of Contents

1 SCOPE .. 1
1.1 Purpose ... 1
1.2 Categorization .. 1
1.3 Presentation .. 1
1.4 Producibility Levels ... 1

2 TECHNOLOGY OVERVIEW OF BOARD AND ASSEMBLY REQUIREMENTS 3
2.1 The Drivers for Component Packaging .. 4
2.1.1 The Thermal Drivers .. 4
2.1.2 The Electric Drivers ... 5
2.1.3 The Real Estate Drivers .. 5
2.1.4 Specific Package Drivers ... 6
2.2 Issues in Component Packaging ... 7
2.2.1 Future Considerations .. 7
2.3 Impact on Interconnecting (Printed Board) Technology 8
2.4 Impact on Assembly .. 9
2.5 Future Implementation Strategies ... 11
2.5.1 Complexity Matrix ... 12

3 COMPONENT PACKAGES .. 13
3.1 Component Identification ... 13
3.1.1 Area Array Component Types .. 13
3.1.2 Peripheral Leaded Devices Packages ... 13
3.1.3 Component Marking .. 14
3.2 Component Materials ... 14
3.2.1 Ball/Column Termination .. 15
3.2.2 Terminations Leads ... 15
3.2.3 Plating and Coating Technologies ... 15
3.2.4 Process Comparisons .. 16
3.2.5 Plastic Packages .. 16
3.2.6 Ceramic Packages ... 17
3.2.7 Die Attach ... 17
3.3 Heat Dissipation Techniques .. 17
3.3.1 Conduction ... 19
3.3.2 Convection .. 20
3.3.3 Radiation .. 20
3.3.4 Thermal Impedance ... 20
3.3.5 Component Level Thermal Characteristics .. 21
3.3.6 Board Level Thermal Management .. 22
3.4 Handling and Storage ... 22
3.4.1 ESD ... 22

4 PACKAGE DETAILS .. 25
4.1 Area Array Package Description ... 25

4.1.1 Physical Properties ... 25
4.1.2 Bump/Termination Layout ... 26
4.1.3 Standardization .. 27
4.2 BGA Types ... 27
4.2.1 Plastic BGA .. 28
4.2.2 Thermally Enhanced BGA ... 29
4.2.3 Tab BGA ... 29
4.2.4 Mini BGA .. 30
4.2.5 Micro BGA .. 30
4.2.6 Ceramic Ball Grid Array (CBGA) ... 30
4.3 Material Decisions ... 31
4.3.1 Thin Film Redistribution .. 32
4.3.2 Coplanarity .. 32
4.3.3 ‘‘Popcorning Effect” Failure ... 32
4.4 Area Array Selection Process .. 32
4.4.1 Device Outlines .. 32
4.4.2 Array Population ... 33
4.5 Peripheral Lead Package Descriptions ... 33
4.5.1 Lead Pitch Parameters ... 34
4.5.2 Standard SMT ... 35
4.5.3 Fine Pitch Packages .. 35
4.5.4 Ultra Fine Pitch Packages ... 35
4.6 Sockets ... 35
4.6.1 ZIF Sockets .. 36
4.6.2 LIF Sockets .. 36

5 INTERCONNECTING STRUCTURES ... 36
5.1 Interconnecting Structure Descriptions .. 36
5.1.1 Rigid Printed Boards .. 37
5.1.2 Flexible Printed Wiring Boards ... 38
5.1.3 Encapsulated Discrete Wire Interconnection Boards 40
5.1.4 Nonorganic (Ceramic) Structures ... 40
5.2 Material Selection ... 42
5.2.1 Reinforcement Material Properties ... 42
5.2.2 Resin Types .. 43
5.2.3 Permanent Polymers (Solder Resist) .. 44
5.2.4 Metallic Foils and Films .. 44
5.3 Manufacturing Options .. 44
5.3.1 Physical Parameters .. 44
5.3.2 Image Transfer ... 45
5.3.3 Feature characteristics (Size, Shape, Tolerances) 45
5.4 Conductor Routing Methodologies .. 45
5.4.1 Wiring Via Densities .. 45
5.4.2 Conductors Geometries .. 47
8.4.4 Qualification and Performance of Rework and Repair of BGA Assembly 77
8.5 Standards for Material Performance 77
8.5.1 Flux for BGA Mounting Applications 77

9 FUTURE NEEDS ... 78

9.1 Critical Factor: Manufacturing Infrastructure 78
9.1.1 Materials .. 78
9.1.2 Equipment .. 78
9.1.3 Design .. 78
9.2 Critical Factor: Bump Attachment and Bonding 78
9.2.1 Dimensional Control ... 79
9.2.2 Metallurgical Integrity 79
9.2.3 Cleanliness of Bumping Site 79

Figure 2−1 Common Lead Pitches in Package Family 3
Figure 2−2 Component Packaging Requirements for Different Types of Systems 4
Figure 2−3 Thermally Enhanced Package 5
Figure 2−4 I/O Pitch Mounting Area Comparisons 6
Figure 2−5 The Move from Present to Future Requirements ... 8
Figure 2−6 Board Routing Area Study 9
Figure 2−7 Typical Cost Curves – Cost vs. Finished VIA Hole. 10
Figure 2−8 Typical Cost Curves – Cost vs. Number of Layers. 10
Figure 2−9 Coplanarity Example of QFP Solder Opens 11
Figure 2−10 Stand-off vs. Cleanability 12
Figure 2−11 Component Packages with Leads Around Perimeter .. 12
Figure 2−12 Component Packages with Leads Underneath in Array Format 12
Figure 3−1 Pin Grid Array ... 13
Figure 3−2 Example of Device Package Marking 14
Figure 3−3 Solder/Coating/Plating Process Comparison 16
Figure 3−4 Temperature Differences Attainable as a Function of Heat Flux 18
Figure 3−5 Heat Flux vs. Temperature Level 19
Figure 3−6 Effect of Package on Thermal Resistance of PLCC, PQFP, and PGA Packages 22
Figure 3−7 Effect of PC Board Material Size on Thermal Resistance of 132-Lead PQFP 22

Figure 3–8 Effect of Air Flow Rate on Thermal Resistance of 168-Lead PGA Package 22
Figure 3–9 Standard ESD Package 23
Figure 3–10 Ball Grid Array Devices Furnish with Die Mounted on Top Surface and Bottom Side for Cavity Down. 26
Figure 4–1 Stand Off Height ... 26
Figure 4–2 Lead Pattern Comparisons 27
Figure 4–4 Signal Routing Approaches 27
Figure 4–5 Contact Patterns .. 28
Figure 4–6 Physical Outline of BGA Package Specifications (Ref. JEDEC Publication No. 95) 28
Figure 4–7 Cavity-up and Cavity-down Chip Mounting 28
Figure 4–8 Plastic BGA Cross Section 29
Figure 4–9 Thermally Enhanced BGA 29
Figure 4–10 Cross-Section of a TBGA Package 30
Figure 4–11 On-Chip Pad Redistribution (Sandia Mini BGA) 30
Figure 4–12 Micro BGA .. 31
Figure 4–13 Cross-Section of CBGA 31
Figure 4–14 BGA Devices Having the Same Physical Size and I/O Count 32
Figure 4–15 Both Even and Odd Column and Row Patterns Are Permitted in the JEDEC Standards 34
Figure 4–16 Depopulated and Staggered 34
Figure 4–17 PLCC (Square) .. 35
Figure 4–18 FQFP Construction 35
Figure 4–19 TQFP & QFP (Square) 36
Figure 5–1 Multilayer Construction 46
Figure 5–2 Solder Mask Defined Land Patterns for CBGA and PBGA 46
Figure 5–3 Land Defined Land Patterns for CBGA and PBGA ... 47
Figure 5–4 PWB Top Surface Including Vias 48
Figure 5–5 First Two Rows of the Array Escape on the Top Surface 49
Figure 6–1 Assembly Classification Examples 51
Figure 6–2 Simplified Process Flow for Type 1 and Type 2 Assemblies ... 52
Figure 6–3 Stencil Opening Aspect Ratio 55
Figure 6–4 Binary and Gray Scale Image Comparison 56
Figure 6–5 Fiducial Locations on a Printed Circuit Board 58
Figure 7–1 Description of the Effects of the Accumulating Fatigue Damage in Solder Joint Structure 66
Figure 8–1 Component Design ... 75
Figure 8–2 Bump Performance .. 76
Figure 8–3 Mounting Structure Design 76
Figure 8–4 Organic MIS Performance 76
Figure 8–5 Inorganic MIS Performance 76
Figure 8–6 Mounting Structure Test Methods 77
Figure 8–7 BGA and Hi-Density Component Assembly 77
Figure 8–8 BGA & Hi-Density Assembly Performance 77
Tables

Table 1–1 Choice of Packages ... 1
Table 3–1 .. 18
Table 3–2 Transfer Coefficient as a Function of Fluid Choice. 21
Table 3–3 Classification and Floor Life of Desiccant Packed Components ... 25
Table 4–1 .. 33
Table 5–1 Comparison of Selected Material Properties 38
Table 5–2 .. 39
Table 5–3 Physical Characteristics of Nonorganic Substrates ... 41
Table 5–4 Number of “Escapes” Versus Array Size on Two PWB Layers ... 49
Table 5–5 Ball/Column Grid Array Signal Routing Guidelines. ... 49
Table 6–1 Solder Alloy Characteristics 53
Table 6–2 Dispensing Method Comparisons 53
Table 6–3 Stencil Creation Method Comparison 54
Table 6–4 Placement Capability - Binary Verses Gray Scale ... 57
Table 6–5 Surface Mount Processes Comparison 63
Table 7–1 Realistic Representative Use Environments, Service Lives, and Acceptable Failure Probabilities for Surface Mounted Electronics by Use Categories ... 67
Table 7–2 Failure Mode Control Techniques 74
Table 7–3 Class to Environment Correlation 74
Implementation of Ball Grid Array and Other High Density Technology

1 SCOPE
This document establishes the requirements and interactions necessary for Printed Board Assembly processes for interconnecting high performance/high pin count I/C packages. Included is information on design principles, material selection, board fabrication, assembly technology, testing strategy, and reliability expectations based on end-use environments.

The focus of the document is on design through testing issues related to Ball Grid Array and other high performance packages including fine pitch, ultra fine pitch and thru-hole PGA.

1.1 Purpose
The purpose of this document is to provide confidence in the Design through Testing processes to ensure that the final assembly will meet the intended goals for product performance. Reliability is established through end use environments that consider the performance requirements of assemblies that are used in electronic products in such markets as consumer, computer, telecommunication, commercial aircraft, industrial & automotive passenger compartment, military ground & ship, space (both LEO and GEO), military avionics, and automotive underhood electronics and the customary use of those equipments.

1.2 Categorization
The details contained herein are organized according to the various issues and are correlated to the specific high pin count, high performance type I/C packages. These include:

- **BGA** Ball Grid Array
- **CBGA** Ceramic Ball Grid Array
- **CCGA** Ceramic Column Grid Array
- **TBGA** Tab Ball Grid Array
- **MBGA** Metal Ball Grid Array
- **PPGA** Plastic Pin Grid Array
- **PGA** Pin Grid Array (Standard and Staggered Pins)
- **SGA** Stud Grid Array (Surface Mount Version of PGA)
- **LGA** Land Grid Array
 - * Plastic
 - * Ceramic
- **QFP** Quad Flat Pack
- **CQFP** Ceramic Quad Flat Pack
- **SSOP** Shrink Small Outline Package
- **TSOP** Thin Small Outline Package
- **TQFP** Thin Quad Flat Pack

Organization of the information is initially provided in accordance to the specific processes (i.e. Design-Fabrication-Assembly-Test). Component information is organized with emphasis on area array type packages. Although there is some discussion of the peripheral format, the major emphasis is on the decision process that forces the manufacturing direction into the area array type package. Table 1-1 indicates the packages of choice in various integration of semiconductor technology. Usually the trade-offs switch from peripheral packages to array type packages at 208 pins or below 0.5 mm pitch on the peripheral package.

<table>
<thead>
<tr>
<th>Semiconductor Integration</th>
<th>Number of Pins, Leads or Balls</th>
<th>Package Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSI</td>
<td>16-48</td>
<td>SOIC</td>
</tr>
<tr>
<td>MSI</td>
<td>48-156</td>
<td>QFP/PGA/BGA</td>
</tr>
<tr>
<td>LSI</td>
<td>156-256</td>
<td>BGA/QFP (0.5, 0.4, 0.3 mm pitch) and PGA</td>
</tr>
<tr>
<td>VLSI</td>
<td>256-500</td>
<td>BGA/PGA</td>
</tr>
<tr>
<td>ULSI</td>
<td>>500</td>
<td>BGA</td>
</tr>
</tbody>
</table>

1.3 Presentation
All dimensions and tolerances in this standard are expressed in metric units, with millimeters being the main form of dimensional expression. Inches may be shown in brackets as appropriate and are not always a direct conversion depending on the round-off concept or the required precision. Users are cautioned to employ a single dimensioning system and not intermix millimeters and inches. Reference information is shown in parentheses ().

1.4 Producibility Levels
The Surface Mount Council, in their “Status of the Technology, Industry Activities and Action Plan” identified several levels of complexity based on manufacturing and assembly processes for electronic assembly. A differentiation was developed that correlated the ease with which an assembly process could place, and attach all the parts and test the final product. Letters were assigned to reflect progressive increases in sophistication of tooling, materials or number of processing steps.