Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices

A joint standard developed by the IPC Plastic Chip Carrier Cracking Task Group (B-10a) and the JEDEC JC-14.1 Committee on Reliability Test Methods for Packaged Devices

Users of this standard are encouraged to participate in the development of future revisions.

Contact:

JEDEC
Solid State Technology Association
2500 Wilson Boulevard
Arlington, VA 22201-3834
Phone (703) 907-7500
Fax (703) 907-7501

IPC
2215 Sanders Road
Northbrook, IL 60062-6135
Phone (847) 509-9700
Fax (847) 509-9798

Supersedes:
IPC/JEDEC J-STD-020B - July 2002
IPC/JEDEC J-STD-020A - April 1999
J-STD-020 - October 1996
JEDEC JESD22-A112
IPC-SM-786A - January 1995
IPC-SM-786 - December 1990
Table of Contents

1 PURPOSE ................................................................. 1
  1.1 Scope ............................................................... 1
  1.2 Background ......................................................... 1

2 APPLICABLE DOCUMENTS ................................... 1
  2.1 JEDEC Solid State Technology Association .......... 1
  2.2 IPC ....................................................................... 2
  2.3 Joint Industry Standards ...................................... 2

3 APPARATUS ............................................................. 2
  3.1 Temperature Humidity Chambers ....................... 2
  3.2 Solder Reflow Equipment ................................... 2
    3.2.1 Full Convection (Preferred) ................................. 2
    3.2.2 Infrared ................................................................. 2
  3.3 Ovens ................................................................. 2
  3.4 Microscopes ......................................................... 2
    3.4.1 Optical Microscope .............................................. 2
    3.4.2 Scanning Acoustic Microscope ........................... 2
  3.5 Cross-Sectioning .................................................. 2
  3.6 Electrical Test ...................................................... 2
  3.7 Weighing Apparatus (Optional) ........................... 2

4 CLASSIFICATION/RECLASSIFICATION ................. 3
  4.1 Compatibility with Pb-Free Rework ................... 3
  4.2 Reclassification .................................................... 3

5 PROCEDURE ............................................................ 4
  5.1 Sample Requirements .......................................... 4
    5.1.1 Reclassification (Qualified Package Without
               Additional Reliability Testing) ............................ 4
    5.1.2 Classification/Reclassification and Rework ........ 4
  5.2 Initial Electrical Test ............................................ 4
  5.3 Initial Inspection .................................................. 4
  5.4 Bake ................................................................. 5
  5.5 Moisture Soak ....................................................... 5
  5.6 Reflow ............................................................... 5
  5.7 Final External Visual ........................................... 5
  5.8 Final Electrical Test ............................................. 5
  5.9 Final Acoustic Microscopy .................................... 5

6 CRITERIA ................................................................. 6
  6.1 Failure Criteria ..................................................... 6
  6.2 Criteria Requiring Further Evaluation ................ 7
    6.2.1 Delamination ...................................................... 7
  6.3 Failure Verification ................................................ 8

7 MOISTURE/REFLOW SENSITIVITY
   CLASSIFICATION ..................................................... 8

8 OPTIONAL WEIGHT GAIN/LOSS ANALYSIS ........ 8
  8.1 Weight Gain .......................................................... 8
  8.2 Absorption Curve .................................................. 8
    8.2.1 Read Points .......................................................... 8
    8.2.2 Dry Weight ............................................................ 8
    8.2.3 Moisture Soak ...................................................... 8
    8.2.4 Readouts ............................................................... 8
  8.3 Desorption Curve .................................................. 9
    8.3.1 Read Points .......................................................... 9
    8.3.2 Baking ................................................................. 9
    8.3.3 Readouts ............................................................... 9

9 ADDITIONS AND EXCEPTIONS ............................. 9
Annex A ................................................................. 10

Figures

  Figure 5-1 Classification Reflow Profile ...................... 6

Tables

  Table 4-1 SnPb Eutectic Process – Package Peak
           Reflow Temperatures ........................................... 3
  Table 4-2 Pb-free Process – Package Classification
           Reflow Temperatures ........................................... 3
  Table 5-1 Moisture Sensitivity Levels .......................... 5
  Table 5-2 Classification Reflow Profiles ........................ 6
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices

1 PURPOSE

The purpose of this standard is to identify the classification level of nonhermetic solid state surface mount devices (SMDs) that are sensitive to moisture-induced stress so that they can be properly packaged, stored, and handled to avoid damage during assembly solder reflow attachment and/or repair operations.

This standard may be used to determine what classification/preconditioning level should be used for SMD package qualification. Passing the criteria in this test method is not sufficient by itself to provide assurance of long-term reliability.

1.1 Scope

This classification procedure applies to all nonhermetic solid state Surface Mount Devices (SMDs) in packages, which, because of absorbed moisture, could be sensitive to damage during solder reflow. The term SMD as used in this document means plastic encapsulated surface mount packages and other packages made with moisture-permeable materials. The categories are intended to be used by SMD producers to inform users (board assembly operations) of the level of moisture sensitivity of their product devices, and by board assembly operations to ensure that proper handling precautions are applied to moisture/reflow sensitive devices. If no major changes have been made to a previously qualified SMD package, this method may be used for recategorization according to 4.2.

This standard cannot address all of the possible component, board assembly and product design combinations. However, the standard does provide a test method and criteria for commonly used technologies. Where uncommon or specialized components or technologies are necessary, the development should include customer/manufacturer involvement and the criteria should include an agreed definition of product acceptance.

SMD packages classified to a given moisture sensitivity level by using Procedures or Criteria defined within any previous version of J-STD-020, JESD22-A112 (rescinded), IPC-SM-786 (superseded) do not need to be recategorized to the current revision unless a change in classification level or a higher peak reflow temperature is desired.

Note: If the procedures in this document are used on packaged devices that are not included in this specification’s scope, the failure criteria for such packages must be agreed upon by the device supplier and their end user.

1.2 Background

The vapor pressure of moisture inside a nonhermetic package increases greatly when the package is exposed to the high temperature of solder reflow. Under certain conditions, this pressure can cause internal delamination of the packaging materials from the die and/or leadframe/substrate, internal cracks that do not extend to the outside of the package, bond damage, wire necking, bond lifting, die lifting, thin film cracking, or cratering beneath the bonds. In the most severe case, the stress can result in external package cracks. This is commonly referred to as the “popcorn” phenomenon because the internal stress causes the package to bulge and then crack with an audible “pop.” SMDs are more susceptible to this problem than through-hole parts because they are exposed to higher temperatures during reflow soldering. The reason for this is that the soldering operation must occur on the same side of the board as the SMD device. For through-hole devices, the soldering operation occurs under the board that shields the devices from the hot solder.

2 APPLICABLE DOCUMENTS

2.1 JEDEC Solid State Technology Association

JESD22-A120 Test Method for the Measurement of Moisture Diffusivity and Water Solubility in Organic Materials Used in Integrated Circuits

JESD22-A113 Preconditioning Procedures of Plastic Surface Mount Devices Prior to Reliability Testing

JESD 47 Stress Test Driven Qualification Specification

JESD-625 Requirements for Handling Electrostatic Discharge Sensitive (ESD) Devices

1. www.jedec.org