Requirements for Electronic Grade Solder Alloys and Fluxed and Non-Fluxed Solid Solders for Electronic Soldering Applications

Developed by the Solder Alloy Task Group (5-24c) of the Assembly and Joining Committee (5-20) of IPC

Users of this standard are encouraged to participate in the development of future revisions.

Contact:
IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, IL 60015-1249
Phone (847) 615-7100
Fax (847) 615-7105
Table of Contents

1 PREFACE ... 1
1.1 Scope ... 1
1.2 Classification ... 1
1.2.1 Alloy Composition .. 1
1.2.2 Alloy Impurity Level .. 1
1.2.3 Solder Form ... 1
1.2.4 Dimensional Characteristics .. 1
1.2.5 Flux Percentage and Metal Content 2
1.3 Definition of Requirements ... 2
1.4 Order of Precedence ... 2
1.5 Conflict ... 2
1.6 Clause References ... 2
1.7 Appendices ... 2
1.8 Terms and Definitions .. 2
1.9 Health and Safety .. 3

2 APPLICABLE DOCUMENTS ... 3
2.1 Joint Industry Standards .. 3
2.2 International Standards Organization (ISO) 3
2.3 IPC .. 3
2.4 American Society for Testing and Materials (ASTM) 3

3 REQUIREMENTS ... 3
3.1 Materials ... 3
3.2 Alloy Composition .. 4
3.3 Alloy Impurities ... 4
3.3.1 Variation D Alloys .. 4
3.4 Solder Forms and Dimensional Characteristics 4
3.4.1 Bar Solder ... 5
3.4.2 Wire Solder ... 5
3.4.3 Ribbon Solder .. 5
3.4.4 Solder Powder .. 5
3.4.5 Spheres ... 5
3.4.6 Special Form Solder .. 5
3.5 Fluxed Solder Characteristics ... 5
3.5.1 Flux Cored Solder .. 5
3.5.2 Flux Coated Solder ... 5
3.6 Flux Characteristics ... 5
3.6.1 Flux Percentage ... 5
3.6.2 Flux Classification ... 5
3.6.3 Solder Pool .. 6
3.6.4 Flux Residue Dryness .. 6
3.7 Labeling for Product Identification 6
3.8 Workmanship ... 6

4 QUALITY ASSURANCE PROVISIONS 6
4.1 Responsibility for Inspection ... 6
4.2 Responsibility for Compliance 6
4.3 Quality Assurance Program .. 6
4.4 Categories of Inspections .. 6
4.4.1 Materials Inspection .. 7
4.4.2 Qualification Inspections .. 7
4.4.3 Quality Conformance Inspections 7
4.5 Test Equipment and Inspection Facilities 7
4.6 Inspection Conditions .. 8
4.7 Inspection Routine .. 8
4.8 Inspection Sampling ... 8
4.9 Preparation of Solder Alloy for Test 8
4.9.1 Flux Cored Solder .. 8
4.9.2 Wire Solder Up to Approximately 6 mm [2.36 in] Diameter .. 8
4.9.3 Ribbon Solder and Other Wire Solder 8
4.10 Failure ... 8
4.11 Inspection Reporting ... 8

5 PREPARATION FOR DELIVERY ... 8
5.1 Preservation, Packing, and Packaging 8

6 NOTES .. 8
6.1 Selection ... 8
6.1.1 Alloys ... 8
6.2 Standard Solder Product Packages 9
6.2.1 Wire and Ribbon Solders ... 10
6.2.2 Bar Solders .. 10
6.2.3 Solder Powder .. 10
6.2.4 Solder Spheres .. 10
6.3 Standard Description of Solid Solder Products 10
6.4 Qualitative Test for the Presence of Lead 10
6.5 Labeling for Lead-Free and Leaded Marking, Symbols and Labels .. 10

Appendix A Solder Alloys .. 18

Appendix B Examples of Inspection Report Format 18

Appendix B-1 Test Report for Solder Alloy Composition and Impurity Level .. 18
Appendix B-2 Inspection Report for Fluxed Wire/Ribbon Solder Individual Inspection and Test Results 19

Appendix B-3 Inspection Report for Non-Fluxed Solder Individual Inspection and Test Results 20

Appendix B-4 Inspection Report for Solder Powder 21

Figures

Figure 6-1 Recommended Lead Free Marking Symbol 9

Figures

Figure 6-1 Recommended Lead Free Marking Symbol 10

Tables

Table 3-1 Percentage by Mass of Impurity Elements in Alloys .. 4

Table 4-1 Requirements and Inspection Routine 7

Table A-1 Composition, and Temperature Characteristics of Lead-free Solder Alloys 11

Table A-2 Composition and Temperature Characteristics of Common Tin-Lead Alloys 13

Table A-3 Composition and Temperature Characteristics for Specialty (non-Tin/Lead) Alloys 15

Table A-4 Cross-Reference from Solidus and Liquidus Temperatures to Alloy Names by Temperature .. 16

Table A-5 Cross-Reference from ISO 9453 Alloy Numbers and Designations to J-STD-006 Alloy Names ... 18
Requirements for Electronic Grade Solder
Alloys and Fluxed and Non-Fluxed Solid
Solders for Electronic Soldering Applications

1 PREFACE

1.1 Scope This standard prescribes the nomenclature, requirements and test methods for electronic grade solder alloys; for fluxed and non-fluxed bar, ribbon, wire, and powder solders, for electronic soldering applications; and for “special form” (see 1.2.3) electronic grade solders. This is a quality control standard and is not intended to relate directly to the material’s performance in the manufacturing process. Solders for applications other than electronics should be procured using ASTM B-32.

This standard is one of a set of three joint industry standards that prescribe the requirements and test methods for soldering materials for use in the electronics industry. The other two joint industry standards are:
J-STD-004 Requirements for Soldering Fluxes
J-STD-005 Requirements for Soldering Pastes

1.2 Classification Soldering alloys covered by this standard shall be classified by alloy composition and impurity level, solder form and dimensional characteristics peculiar to the solder form, flux percentage and flux classification, if applicable. These classifications shall be used as part of the standard description of solder products. (See 6.3.)

1.2.1 Alloy Composition The solder alloys covered by this standard include, but are not limited to, the alloys listed in Appendix A, including pure tin and pure indium. Each alloy is identified by an alloy name, which is composed of a series of alphanumeric characters that identify the component elements in the alloy by chemical symbol and nominal percentage by mass.

The percentage of each element in an alloy shall be determined by any standard analytical procedure with sufficient resolution. Wet chemistry shall be used as the reference procedure. The tolerance & impurity levels of the alloy shall conform to the current version of J-STD-006, or equivalent.

All manufacturers designed alloy additions as agreed between user and supplier (AABUS) shall be identified as a fraction of the weight of the alloy.

1.2.2 Alloy Impurity Level The allowable impurity level of the solder alloys covered by this standard is identified in 3.3. See 3.3.1 for the description of Variation D alloys. The alloy variation letter D is added to the end of an alloy name and becomes part of the alloy’s name.

1.2.3 Solder Form The forms of solder materials covered by this set of standards include paste (cream), bar, powder, ribbon, wire and special electronic grade solders which do not fully comply with the requirements of standard solder alloys and forms listed herein. Some examples of special form solders are anodes, ingots, preforms, bars with hook and eye ends, and multiple-alloy solder powders. A single-letter identifying symbol as defined below may be used.

P – Paste (Cream)
B – Bar
D – Powder
R – Ribbon
W – Wire
S – Special
H – Sphere

1.2.4 Dimensional Characteristics Standard bar solders are further classified by unit mass. Wire solders are further classified by wire size (outside diameter) and unit mass. Ribbon solders are further classified by thickness, width and unit mass. Powder solders are further classified by powder particle size distribution and unit mass. See 3.4.1 to 3.4.5.