Requirements for Soldering Fluxes

A standard developed by the Flux Specifications Task Group (5-24a) of the Assembly and Joining Processes Committee (5-20) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois 60015-1249
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 **SCOPE AND DESIGNATION** ... 1

1.1 Scope .. 1

1.2 Purpose ... 1

1.3 Designation .. 1

1.4 Interpretation “Shall” ... 1

2 **APPLICABLE DOCUMENTS** ... 2

2.1 IPC .. 2

2.2 Joint Industry Standards .. 2

2.3 American Society for Testing and Materials (ASTM) 2

2.4 British Standards ... 2

2.5 International Organization for Standards 2

2.6 National Conference of Standards Laboratories (NCSL) 2

2.7 Telcordia Technologies .. 2

2.8 International Electrotechnical Commission (IEC) 2

2.9 Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) 3

3 **GENERAL REQUIREMENTS** ... 3

3.1 Conflict ... 3

3.2 Terms and Definitions and Acronyms 3

3.2.1 ECM .. 3

3.2.2 SIR ... 3

3.2.3 Supplier .. 3

3.3 Flux Qualification ... 3

3.3.1 Classification .. 3

3.3.1.1 Flux Composition ... 3

3.3.1.2.1 Flux Type .. 4

3.3.1.2.2 Halide Content ... 4

3.3.1.2.2.1 Halide Content 4

3.3.2 Characterization .. 4

3.3.2.1 Copper Mirror Test ... 4

3.3.2.2 Corrosion Test .. 4

3.3.2.3 Quantitative Halide Content Tests 6

3.3.2.4 SIR Test .. 6

3.3.2.4.1 Reporting SIR Test Results 6

3.3.2.5 Test Resistance to ECM 6

3.3.2.5.1 Reporting ECM Test Results 6

3.3.2 Characterization Testing ... 6

3.4.2.1 Flux Solids (Nonvolatile) Determination 6

3.4.2.2 Acid Value Determination 6

3.4.2.3 Specific Gravity Determination 6

3.4.2.4 Viscosity of Paste (Tacky) Flux 7

3.4.2.5 Visual .. 7

3.5 Optional Testing ... 7

3.5.1 Optional Qualitative Halide Tests 7

3.5.1.1 Chlorides and Bromides by Silver Chromate Method .. 7

3.5.1.2 Fluorides By Spot Test 7

3.5.2 Optional SIR Tests .. 7

3.5.2.1 Reporting Values for Optional SIR Test Methods .. 7

3.5.3 Optional Fungus Resistance Test 7

3.6 Quality Conformance Testing .. 7

3.6.1 Acid Value Determination 7

3.6.2 Specific Gravity Determination 7

3.6.3 Viscosity of Paste (Tacky) Flux 7

3.6.4 Visual ... 7

3.7 Performance Testing .. 7

3.7.1 Wetting Balance Test ... 7

3.7.2 Spread Test - Liquid Flux 7

4 **QUALIFICATION AND QUALITY ASSURANCE PROVISIONS** 7

4.1 Responsibility for Inspection .. 7

4.1.1 Responsibility for Compliance 7

4.1.1.1 Quality Assurance Program 7

4.1.2 Test Equipment and Inspection Facilities 7

4.1.3 Inspection Conditions ... 8

4.2 Types of Inspections .. 8

4.3 Qualification Inspection .. 8

4.3.1 Sample Size .. 8

4.3.2 Inspection Routine .. 8

4.3.3 Requalification ... 9

4.3.3.1 Formula Variations Constituting Material Change .. 9

4.3.3.2 Manufacturing Site Change 9

4.4 Quality Conformance Inspection 9

4.4.1 SAMPLING PLAN .. 9

4.4.2 Rejected Lots .. 9

4.5 Performance Inspection .. 9

Appendix A Example Qualification Test Report 10

Appendix B Notes ... 10
Figures
Figure 3-1 Flux Corrosivity by Copper Mirror Test 5
Figure 3-2 Example of No Corrosion 5
Figure 3-3 Example of Minor Corrosion 5
Figure 3-4 Example of Major Corrosion 6
Figure B-1 Typical Wetting Balance Curve 12

Tables
Table 1-1 Flux Identification System 1
Table 3-1 Preparation of Flux Forms for Testing 3
Table 3-2 Test Requirements for Flux Classification 4
Table 4-1 Qualification, Quality Conformance and
 Performance Testing for Flux 8
Table B-1 Spread Area Requirements 13
Requirements for Soldering Fluxes

1 SCOPE AND DESIGNATION

1.1 Scope This standard prescribes general requirements for the classification and characterization of fluxes for high quality solder interconnections. This standard may be used for quality control and procurement purposes.

1.2 Purpose The purpose of this standard is to classify and characterize tin/lead and lead-free soldering flux materials for use in electronic metallurgical interconnections for printed circuit board assembly. Soldering flux materials include the following: liquid flux, paste flux, solder paste, solder cream, and flux-coated and flux-cored solder wires and preforms. It is not the intent of this standard to exclude any acceptable flux or soldering material; however, these materials must produce the desired electrical and metallurgical interconnection.

The requirements for fluxes are defined in general terms for standard classification. Appendix B has additional information that will help users understand some of the requirements of this standard. In practice, where more stringent requirements are necessary or other manufacturing processes are used, the user shall define these as additional requirements.

1.3 Designation For ordering purposes and designation by other specifications, the following flux identification system shall be used (see Table 1-1).

1.4 Interpretation “Shall” The imperative form of the verb is used throughout this standard whenever a requirement is intended to express a provision that is mandatory. Deviation from a “shall” requirement may be considered if sufficient information is supplied to justify the exception.

Table 1-1 Flux Identification System

<table>
<thead>
<tr>
<th>Flux Composition</th>
<th>Flux/Flux Residue Activity Levels</th>
<th>% Halide(^1) (by weight)</th>
<th>Flux Type(^2)</th>
<th>Flux Designator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosin (RO)</td>
<td>Low</td>
<td><0.05%</td>
<td>L0</td>
<td>ROL0</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0.5%</td>
<td>L1</td>
<td>ROL1</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td><0.05%</td>
<td>M0</td>
<td>ROM0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5-2.0%</td>
<td>M1</td>
<td>ROM1</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td><0.05%</td>
<td>H0</td>
<td>ROH0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>2.0%</td>
<td>H1</td>
<td>ROH1</td>
</tr>
<tr>
<td>Resin (RE)</td>
<td>Low</td>
<td><0.05%</td>
<td>L0</td>
<td>REL0</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0.5%</td>
<td>L1</td>
<td>REL1</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td><0.05%</td>
<td>M0</td>
<td>REM0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5-2.0%</td>
<td>M1</td>
<td>REM1</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td><0.05%</td>
<td>H0</td>
<td>REH0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>2.0%</td>
<td>H1</td>
<td>REH1</td>
</tr>
<tr>
<td>Organic (OR)</td>
<td>Low</td>
<td><0.05%</td>
<td>L0</td>
<td>ORL0</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0.5%</td>
<td>L1</td>
<td>ORL1</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td><0.05%</td>
<td>M0</td>
<td>ORM0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5-2.0%</td>
<td>M1</td>
<td>ORM1</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td><0.05%</td>
<td>H0</td>
<td>ORH0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>2.0%</td>
<td>H1</td>
<td>ORH1</td>
</tr>
<tr>
<td>Inorganic (IN)</td>
<td>Low</td>
<td><0.05%</td>
<td>L0</td>
<td>INL0</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0.5%</td>
<td>L1</td>
<td>INL1</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td><0.05%</td>
<td>M0</td>
<td>INM0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5-2.0%</td>
<td>M1</td>
<td>INM1</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td><0.05%</td>
<td>H0</td>
<td>INH0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>2.0%</td>
<td>H1</td>
<td>INH1</td>
</tr>
</tbody>
</table>

1. Halide measuring <0.05% by weight in flux solids and may be known as halide-free. This method determines the amount of ionic halide present (see Appendix B-10).

2. The 0 and 1 indicate the absence or presence of halides, respectively. See paragraph 3.3.1.2.2 for flux type nomenclature.