IPC J-STD-001G

Requirements for Soldered Electrical and Electronic Assemblies

Developed by the J-STD-001 Task Group (5-22a) of the Soldering Subcommittee (5-22) of the Assembly & Joining Committee (5-20) of IPC

If a conflict occurs between the English and translated versions of this document, the English version will take precedence.

Supersedes:
J-STD-001F WAM1 - February 2016
J-STD-001F - July 2014
J-STD-001E - April 2010
J-STD-001D - February 2005
J-STD-001C - March 2000
J-STD-001B - October 1996
J-STD-001A - April 1992

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
Table of Contents

1 GENERAL .. 1
1.1 Scope .. 1
1.2 Purpose .. 1
1.3 Classification .. 1
1.4 Measurement Units and Applications 1
1.5 Definition of Requirements 1
1.5.1 Hardware Defects and Process Indicators 2
1.5.2 Material and Process Nonconformance 2
1.6 General Requirements 2
1.7 Order of Precedence 3
1.7.1 Conflict .. 3
1.7.2 Clause References 3
1.8 Terms and Definitions 3
1.8.1 Diameter .. 3
1.8.2 Disposition .. 3
1.8.3 Electrical Clearance 3
1.8.4 FOD (Foreign Object Debris) 3
1.8.5 High Voltage .. 3
1.8.6 Manufacturer (Assembler) 3
1.8.7 Objective Evidence 4
1.8.8 Process Control 4
1.8.9 Proficiency .. 4
1.8.10 Solder Destination Side 4
1.8.11 Solder Source Side 4
1.8.12 Supplier .. 4
1.8.13 User .. 4
1.8.14 Wire Overwrap 4
1.8.15 Wire Overlap 4
1.9 Requirements Flowdown 4
1.10 Personnel Proficiency 5
1.11 Acceptance Requirements 5
1.12 General Assembly Requirements 5
1.13 Miscellaneous Requirements 5
1.13.1 Health and Safety 5
1.13.2 Procedures for Specialized Technologies 5
2 APPLICABLE DOCUMENTS 6
2.1 IPC .. 6
2.2 JEDEC .. 7
2.3 Joint Industry Standards 7
2.4 ASTM .. 7
2.5 Electrostatic Discharge Association 7
2.6 International Electrotechnical Commission 7
2.7 SAE International 7
2.8 Military Standards 7
3 MATERIALS, COMPONENTS AND EQUIPMENT REQUIREMENTS 8
3.1 Materials ... 8
3.2 Solder ... 8
3.2.1 Solder – Lead Free 8
3.2.2 Solder Purity Maintenance 8
3.3 Flux ... 9
3.3.1 Flux Application 9
3.4 Solder Paste .. 9
3.5 Solder Preforms 9
3.6 Adhesives ... 9
3.7 Chemical Strippers 9
3.8 Components .. 9
3.8.1 Component and Seal Damage 9
3.8.2 Coating Meniscus 10
3.9 Tools and Equipment 10
4 GENERAL SOLDERING AND ASSEMBLY REQUIREMENTS 10
4.1 Electrostatic Discharge (ESD) 10
4.2 Facilities ... 10
4.2.1 Environmental Controls 10
4.2.2 Temperature and Humidity 10
4.2.3 Lighting ... 10
4.2.4 Field Assembly Operations 10
4.3 Solderability ... 10
4.4 Solderability Maintenance 10
4.5 Removal of Component Surface Finishes 11
4.5.1 Gold Removal 11
4.5.2 Other Metallic Surface Finishes Removal 11
4.6 Thermal Protection 11
4.7 Rework of Nonsolderable Parts 11
4.8 Preprocessing Cleanliness Requirements 11
4.9 General Part Mounting Requirements 11
4.9.1 General Requirements 12
4.9.2 Lead Deformation Limits 12
4.10 Hole Obstruction 12
4.11 Metal-Cased Component Isolation 12
4.12 Adhesive Coverage Limits 12
4.13 Mounting of Parts on Parts (Stacking of Components) ... 12
<table>
<thead>
<tr>
<th>Section Number</th>
<th>Section Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14</td>
<td>Connectors and Contact Areas</td>
<td>12</td>
</tr>
<tr>
<td>4.15</td>
<td>Handling of Parts</td>
<td>12</td>
</tr>
<tr>
<td>4.15.1</td>
<td>Preheating</td>
<td>12</td>
</tr>
<tr>
<td>4.15.2</td>
<td>Controlled Cooling</td>
<td>12</td>
</tr>
<tr>
<td>4.15.3</td>
<td>Drying/Degassing</td>
<td>12</td>
</tr>
<tr>
<td>4.15.4</td>
<td>Holding Devices and Materials</td>
<td>12</td>
</tr>
<tr>
<td>4.16</td>
<td>Machine (Nonreflow) Soldering</td>
<td>13</td>
</tr>
<tr>
<td>4.16.1</td>
<td>Machine Controls</td>
<td>13</td>
</tr>
<tr>
<td>4.16.2</td>
<td>Solder Bath</td>
<td>13</td>
</tr>
<tr>
<td>4.17</td>
<td>Reflow Soldering</td>
<td>13</td>
</tr>
<tr>
<td>4.17.1</td>
<td>Intrusive Soldering (Paste-in-Hole)</td>
<td>13</td>
</tr>
<tr>
<td>4.18</td>
<td>Solder Connection</td>
<td>13</td>
</tr>
<tr>
<td>4.18.1</td>
<td>Exposed Surfaces</td>
<td>14</td>
</tr>
<tr>
<td>4.18.2</td>
<td>Solder Connection Anomalies</td>
<td>14</td>
</tr>
<tr>
<td>4.18.3</td>
<td>Partially Visible or Hidden Solder Connections</td>
<td>14</td>
</tr>
<tr>
<td>4.19</td>
<td>Heat Shrinkable Soldering Devices</td>
<td>14</td>
</tr>
<tr>
<td>5.1</td>
<td>Wire and Cable Preparation</td>
<td>15</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Insulation Damage</td>
<td>15</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Strand Damage</td>
<td>15</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Tinning of Stranded Wire – Forming</td>
<td>16</td>
</tr>
<tr>
<td>5.2</td>
<td>Solder Terminals</td>
<td>16</td>
</tr>
<tr>
<td>5.3</td>
<td>Bifurcated, Turret and Slotted Terminal Installation</td>
<td>16</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Shank Damage</td>
<td>16</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Flange Damage</td>
<td>16</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Flared Flange Angles</td>
<td>16</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Terminal Mounting – Mechanical</td>
<td>17</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Terminal Mounting – Electrical</td>
<td>17</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Terminal Mounting – Soldering</td>
<td>17</td>
</tr>
<tr>
<td>5.4</td>
<td>Mounting to Terminals</td>
<td>17</td>
</tr>
<tr>
<td>5.4.1</td>
<td>General Requirements</td>
<td>17</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Turret and Straight Pin Terminals</td>
<td>19</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Bifurcated Terminals</td>
<td>19</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Slotted Terminals</td>
<td>21</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Hook Terminals</td>
<td>21</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Pierced or Perforated Terminals</td>
<td>21</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Cup and Hollow Cylindrical Terminals – Placement</td>
<td>22</td>
</tr>
<tr>
<td>5.5</td>
<td>Soldering to Terminals</td>
<td>22</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Bifurcated Terminals</td>
<td>22</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Slotted Terminal</td>
<td>22</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Cup and Hollow Cylindrical Terminals – Soldering</td>
<td>22</td>
</tr>
<tr>
<td>5.6</td>
<td>Jumper Wires</td>
<td>22</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Insulation</td>
<td>23</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Wire Routing</td>
<td>23</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Wire Staking</td>
<td>23</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Unpopulated Land or Via – Lap Soldered</td>
<td>23</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Supported Holes</td>
<td>23</td>
</tr>
<tr>
<td>5.6.6</td>
<td>SMT</td>
<td>23</td>
</tr>
<tr>
<td>6.1</td>
<td>Through-Hole Terminations – General</td>
<td>24</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Lead Forming</td>
<td>25</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Termination Requirements</td>
<td>25</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Lead Trimming</td>
<td>26</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Interfacial Connections</td>
<td>26</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Coating Meniscus In Solder</td>
<td>26</td>
</tr>
<tr>
<td>6.1.6</td>
<td>Supported Holes</td>
<td>27</td>
</tr>
<tr>
<td>6.1.7</td>
<td>Through-Hole Component Lead Soldering</td>
<td>27</td>
</tr>
<tr>
<td>6.1.8</td>
<td>Unsupported Holes</td>
<td>27</td>
</tr>
<tr>
<td>6.1.9</td>
<td>Lead Termination Requirements for Unsupported Holes</td>
<td>27</td>
</tr>
<tr>
<td>6.2</td>
<td>Surface Mount Device Lead Bends</td>
<td>29</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Solder Application</td>
<td>29</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Flat Pack Parallelism</td>
<td>29</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Surface Mount Device Lead Bends</td>
<td>29</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Flattened Leads</td>
<td>29</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Parts Not Configured for Surface Mounting</td>
<td>29</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Leaded Component Body Clearance</td>
<td>29</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Axial-Leaded Components</td>
<td>29</td>
</tr>
<tr>
<td>6.2.8</td>
<td>Parts Configured for Butt/I Lead Mounting</td>
<td>29</td>
</tr>
<tr>
<td>6.2.9</td>
<td>Installation of Surface Mount Components</td>
<td>29</td>
</tr>
<tr>
<td>6.2.10</td>
<td>Soldering Requirements</td>
<td>29</td>
</tr>
<tr>
<td>6.2.11</td>
<td>Misaligned Components</td>
<td>30</td>
</tr>
<tr>
<td>6.2.12</td>
<td>Unspecified and Special Requirements</td>
<td>30</td>
</tr>
<tr>
<td>6.2.13</td>
<td>Bottom Only Chip Component Terminations</td>
<td>31</td>
</tr>
<tr>
<td>6.2.14</td>
<td>Rectangular or Square End Chip Components – 1, 2, 3 or 5 Side Termination(s)</td>
<td>32</td>
</tr>
<tr>
<td>6.2.15</td>
<td>Cylindrical End Cap Terminations</td>
<td>33</td>
</tr>
<tr>
<td>6.2.16</td>
<td>Castellated Terminations</td>
<td>34</td>
</tr>
<tr>
<td>6.2.17</td>
<td>Flat Gull Wing Leads</td>
<td>35</td>
</tr>
<tr>
<td>6.2.18</td>
<td>Round or Flattened (Coined) Gull Wing Leads</td>
<td>36</td>
</tr>
<tr>
<td>6.2.19</td>
<td>J Lead Terminations</td>
<td>37</td>
</tr>
</tbody>
</table>
8 CLEANING PROCESS REQUIREMENTS ... 51
8.1 Cleanliness Exemptions ... 51
8.2 Ultrasonic Cleaning ... 51
8.3 Post-Solder Cleanliness ... 51
8.3.1 Foreign Object Debris (FOD) 51
8.3.2 Flux Residues and Other Ionic or Organic Contaminants ... 51
8.3.3 Post-Soldering Cleanliness Designator 51
8.3.4 Cleaning Option .. 51
8.3.5 Test for Cleanliness .. 51
8.3.6 Testing ... 52
8.4 Contaminants .. 51

9 PCB REQUIREMENTS ... 53
9.1 Printed Circuit Board Damage 53
9.1.1 Blistering/Delamination .. 53
9.1.2 Weave Exposure/Cut Fibers 53
9.1.3 Haloing ... 53
9.1.4 Edge Delamination ... 53
9.1.5 Land/Conductor Separation 53
9.1.6 Land/Conductor Reduction in Size 53
9.1.7 Flexible Circuitry Delamination 53
9.1.8 Flexible Circuitry Damage 53
9.1.9 Burns ... 53
9.1.10 Non-Soldered Edge Contacts 53
9.1.11 Measles ... 53
9.1.12 Crazing ... 54
9.2 Marking ... 54
9.3 Bow and Twist (Warpage) 54
9.4 Depanelization ... 54

10 COATING, ENCAPSULATION AND STAKING (ADHESIVE) 54
10.1 Conformal Coating – Materials 54
10.2 Conformal Coating – Masking 54
10.3 Conformal Coating – Application 54
10.3.1 Conformal Coating on Components 55
10.3.2 Thickness ... 55
10.3.3 Uniformity ... 55
10.3.4 Transparency ... 55
10.3.5 Bubbles and Voids ... 55
10.3.6 Delamination ... 55
10.3.7 Foreign Objects Debris ... 55
10.3.8 Other Visual Conditions 55
10.3.9 Inspection .. 56
10.3.10 Rework or Touchup of Conformal Coating 56
10.4 Encapsulation ... 56
10.4.1 Application .. 56
10.4.2 Performance Requirements 56
10.4.3 Rework of Encapsulant Material 56
10.4.4 Encapsulant Inspection ... 56
10.5 Staking .. 56
10.5.1 Staking – Application .. 56
10.5.2 Staking – Adhesive ... 58
10.5.3 Staking (Inspection) .. 58

11 WITNESS (TORQUE/ANTI-TAMPERING) STRIPE 58

12 PRODUCT ASSURANCE ... 58
12.1 Inspection Methodology ... 58
12.1.1 Process Verification Inspection 58
12.1.2 Visual Inspection ... 59
12.2 Process Control Requirements 60
12.2.1 Opportunities Determination 60
12.3 Statistical Process Control ... 60

13 REWORK AND REPAIR ... 61
13.1 Rework .. 61
13.2 Repair ... 61
13.3 Post Rework/Repair Cleaning 61

APPENDIX A Guidelines for Soldering Tools and Equipment 62
APPENDIX B Minimum Electrical Clearance – Electrical Conductor Spacing 64
APPENDIX C J-STD-001 Guidance on Objective Evidence of Material Compatibility 66

Figures
Figure 1-1 Overwrap .. 4
Figure 1-2 Overlap .. 4
Figure 4-1 Hole Obstruction ... 12
Figure 4-2 Acceptable Wetting Angles 13
Figure 5-1 Insulation Thickness 15
Table 7-7 Dimensional Criteria – Flat Gull Wing Leads

Table 7-6 Dimensional Criteria – Castellated Terminations

Table 7-5 Dimensional Criteria – Cylindrical End Cap Terminations

Table 7-4 Dimensional Criteria – Rectangular or Square End Chip Components

Table 7-3 Dimensional Criteria – Bottom Only Chip Component Terminations

Table 7-2 Dimensional Criteria – Bottom Only Chip Component Terminations

Table 7-1 Dimensional Criteria – Bottom Only Chip Component Terminations

Table 6-7 Unsupported Holes with Component Leads, Minimum Acceptable Conditions

Table 6-6 Supported Holes with Component Leads, Minimum Acceptable Conditions

Table 6-5 Protrusion of Leads in Supported Holes

Table 6-4 Protrusion of Leads in Supported Holes

Table 6-3 Lead Bend Radius

Table 6-2 Components with Spacers

Table 6-1 Component to Land Clearance

Table 5-9 Pierced or Perforated Terminal Wire Placement

Table 5-8 Hook Terminal Wire Placement

Table 5-7 Bifurcated Terminal Side Route Placement – Side Route with Wrap

Table 5-6 Bifurcated Terminal Side Route Placement – Straight-Through Staking Requirements

Table 5-5 Bifurcated Terminal Wire Placement – Side Route Placement

Table 5-4 AWG 30 and Smaller Wire Wrap Requirements

Table 5-3 Turret and Straight Pin Wire Placement

Table 5-2 Terminal Mounting Minimum Soldering Requirements

Table 5-1 Allowable Strand Damage

Table 5-0 Solder Depression

Table 4-9 Charged Leads

Table 4-8 Through-Hole Leads

Table 4-7 Wing Leads

Table 4-6 Components

Table 4-5 Connection

Table 4-4 Straight-Through Staking Requirements

Table 4-3 Side Route with Wrap

Table 4-2 Protrusion of Leads in Unsupported Holes

Table 4-1 Solder Anomalies

Table 3-9 Unsupported Holes with Component Leads, Minimum Acceptable Conditions

Table 3-8 Supported Holes with Component Leads, Minimum Acceptable Conditions

Table 3-7 Unsupported Holes with Component Leads, Minimum Acceptable Conditions

Table 3-6 Supported Holes with Component Leads, Minimum Acceptable Conditions

Table 3-5 Protrusion of Leads in Unsupported Holes

Table 3-4 Protrusion of Leads in Supported Holes

Table 3-3 Lead Bend Radius

Table 3-2 Components with Spacers

Table 3-1 Component to Land Clearance

Table 2-9 Wire Placement

Table 2-8 Component Terminations

Table 2-7 Minimum Acceptable Conditions

Table 2-6 Protrusion of Leads in Unsupported Holes

Table 2-5 Protrusion of Leads in Supported Holes

Table 2-4 Connection

Table 2-3 Side Route with Wrap

Table 2-2 Protrusion of Leads in Supported Holes

Table 2-1 Solder Anomalies

Table 1-9 Charged Leads

Table 1-8 Through-Hole Leads

Table 1-7 Wing Leads

Table 1-6 Components

Table 1-5 Connection

Table 1-4 Straight-Through Staking Requirements

Table 1-3 Side Route with Wrap

Table 1-2 Protrusion of Leads in Unsupported Holes

Table 1-1 Solder Anomalies

Table 1-0 Supports

Table 1-0 Component Terminations

Table 1-0 Minimum Acceptable Conditions

Table 1-0 Protrusion of Leads in Supported Holes

Table 1-0 Protrusion of Leads in Unsupported Holes

Table 1-0 Connection

Table 1-0 Side Route with Wrap

Table 1-0 Protrusion of Leads in Supported Holes

Table 1-0 Protrusion of Leads in Unsupported Holes

Table 1-0 Connection

Table 1-0 Side Route with Wrap

Table 1-0 Protrusion of Leads in Supported Holes

Table 1-0 Protrusion of Leads in Unsupported Holes

Table 1-0 Connection

Table 1-0 Side Route with Wrap

Table 1-0 Protrusion of Leads in Supported Holes

Table 1-0 Protrusion of Leads in Unsupported Holes

Table 1-0 Connection

Table 1-0 Side Route with Wrap

Table 1-0 Protrusion of Leads in Supported Holes

Table 1-0 Protrusion of Leads in Unsupported Holes

Table 1-0 Connection

Table 1-0 Side Route with Wrap

Table 1-0 Protrusion of Leads in Supported Holes

Table 1-0 Protrusion of Leads in Unsupported Holes

Table 1-0 Connection

Table 1-0 Side Route with Wrap

Table 1-0 Protrusion of Leads in Supported Holes

Table 1-0 Protrusion of Leads in Unsupported Holes

Table 1-0 Connection

Table 1-0 Side Route with Wrap
<table>
<thead>
<tr>
<th>Table 7-9</th>
<th>Dimensional Criteria – J Leads</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 7-10</td>
<td>Dimensional Criteria – Butt/I Connections ...</td>
<td>38</td>
</tr>
<tr>
<td>Table 7-11</td>
<td>Dimensional Criteria – Butt/I Terminations – Solder Charged Terminations</td>
<td>39</td>
</tr>
<tr>
<td>Table 7-12A</td>
<td>Dimensional Criteria – Power Dissipating Flat Lug Leads</td>
<td>40</td>
</tr>
<tr>
<td>Table 7-12B</td>
<td>Dimensional Criteria – Flat Unformed Leads, e.g., flexible circuitry termination</td>
<td>40</td>
</tr>
<tr>
<td>Table 7-13</td>
<td>Dimensional Criteria – Tall Profile Components Having Bottom Only Terminations</td>
<td>42</td>
</tr>
<tr>
<td>Table 7-14</td>
<td>Dimensional Criteria – Inward Formed L-Shaped Ribbon Leads</td>
<td>43</td>
</tr>
<tr>
<td>Table 7-15</td>
<td>Dimensional Criteria – Ball Grid Array Components with Collapsing Balls</td>
<td>45</td>
</tr>
<tr>
<td>Table 7-16</td>
<td>Ball Grid Array Components with Noncollapsing Balls ..</td>
<td>46</td>
</tr>
<tr>
<td>Table 7-17</td>
<td>Column Grid Array ..</td>
<td>46</td>
</tr>
<tr>
<td>Table 7-18</td>
<td>Dimensional Criteria – BTC</td>
<td>47</td>
</tr>
<tr>
<td>Table 7-19</td>
<td>Dimensional Criteria – Bottom Thermal Plane Terminations</td>
<td>48</td>
</tr>
<tr>
<td>Table 7-20</td>
<td>Dimensional Criteria Flattened Post Connections ..</td>
<td>49</td>
</tr>
<tr>
<td>Table 7-21</td>
<td>Dimensional Criteria – P-Style Terminations ..</td>
<td>50</td>
</tr>
<tr>
<td>Table 8-1</td>
<td>Designation of Surfaces to be Cleaned</td>
<td>51</td>
</tr>
<tr>
<td>Table 8-2</td>
<td>Cleanliness Testing Designators</td>
<td>51</td>
</tr>
<tr>
<td>Table 10-1</td>
<td>Coating Thickness</td>
<td>55</td>
</tr>
<tr>
<td>Table 12-1</td>
<td>Magnification Aid Applications for Solder Connections ..</td>
<td>59</td>
</tr>
<tr>
<td>Table 12-2</td>
<td>Magnification Aid Applications for Wires and Wire Connections</td>
<td>59</td>
</tr>
<tr>
<td>Table 12-3</td>
<td>Magnification Aid Applications – Other</td>
<td>59</td>
</tr>
</tbody>
</table>
Requirements for Soldered Electrical and Electronic Assemblies

1 GENERAL

1.1 Scope This Standard describes materials, methods and acceptance criteria for producing soldered electrical and electronic assemblies. The intent of this document is to rely on process control methodology to ensure consistent quality levels during the manufacture of products. It is not the intent of this Standard to exclude any procedure for component placement or for applying flux and solder used to make the electrical connection.

1.2 Purpose This Standard prescribes material requirements, process requirements, and acceptability requirements for the manufacture of soldered electrical and electronic assemblies. For a more complete understanding of this document’s recommendations and requirements, one may use this document in conjunction with IPC-HDBK-001, IPC-AJ-820 and IPC-A-610. Standards may be updated at any time, including with the addition of amendments. The use of an amendment or a newer revision is not automatically required.

1.3 Classification This Standard recognizes that electrical and electronic assemblies are subject to classifications by intended end-item use. Three general end-product classes have been established to reflect differences in manufacturability, complexity, functional performance requirements, and verification (inspection/test) frequency. It should be recognized that there may be overlaps of equipment between classes.

The User, see 1.8.13, is responsible for defining the product class. The product class should be stated in the procurement documentation package.

CLASS 1 General Electronic Products
Includes products suitable for applications where the major requirement is function of the completed assembly.

CLASS 2 Dedicated Service Electronic Products
Includes products where continued performance and extended life is required, and for which uninterrupted service is desired but not critical. Typically the end-use environment would not cause failures.

CLASS 3 High Performance/Harsh Environment Electronic Products
Includes products where continued high performance or performance-on-demand is critical, equipment downtime cannot be tolerated, end-use environment may be uncommonly harsh, and the equipment must function when required, such as life support or other critical systems.

1.4 Measurement Units and Applications This Standard uses International System of Units (SI) units per ASTM SI10, IEEE/ASTM SI 10, Section 3 [Imperial English equivalent units are in brackets for convenience]. The SI units used in this Standard are millimeters (mm) [in] for dimensions and dimensional tolerances, Celsius (°C) [°F] for temperature and temperature tolerances, grams (g) [oz] for weight, and lumens (lm) [footcandles] for illuminance.

Note: This Standard uses other SI prefixes (ASTM SI10, Section 3.2) to eliminate leading zeroes (for example, 0.0012 mm becomes 1.2 µm) or as alternative to powers-of-ten (3.6 x 10³ mm becomes 3.6 m).

1.4.1 Verification of Dimensions Actual measurement of specific part mounting and solder fillet dimensions and determination of percentages are not required except for referee purposes. For determining conformance to the specifications in this Standard, round all observed or calculated values “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with the rounding method of ASTM Practice E29. For example, specifications of 2.5 mm max, 2.50 mm max, or 2.500 mm max, round the measured value to the nearest 0.1 mm, 0.01 mm, or 0.001 mm, respectively, and then compare to the specification number cited.

1.5 Definition of Requirements The words shall or shall not are used in the text of this document wherever there is a requirement for materials, preparation, process control or acceptance of a soldered connection.