IPC-HDBK-840

Solder Mask Handbook

Developed by the Solder Mask Handbook Task Group (5-33d) of the Cleaning and Coating Committee (5-30) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1219
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 INTRODUCTION ... 1
 1.1 Background ... 1
 1.2 Purpose .. 1
 1.3 Target Audience ... 1

2 APPLICABLE DOCUMENTS 1
 2.1 IPC .. 1
 2.2 Joint Industry Standards 2
 2.3 Telcordia ... 2
 2.4 ISO .. 2
 2.5 American Society for Testing and Materials 2
 2.6 Underwriters Laboratories 2
 2.7 International Electrotechnical Commission 2

3 TYPES OF SOLDER MASK 2
 3.1 Direct Imaging Solder Mask 2
 3.1.1 Screen Imaged (Screen Print) 2
 3.1.2 Ink Jet ... 3
 3.1.3 Laser Ablated ... 3
 3.1.4 Coverlay/Punched Film 3
 3.2 Photoimageable Solder Mask 3
 3.2.1 Dry Film (Photoimageable) 3
 3.2.2 Liquid Photoimageable (LPI) 3
 3.2.3 Laser Direct Imageable (LDI) 3
 3.2.4 Photoimageable Coverlay 4
 3.3 Temporary Solder Mask 4
 3.3.1 Peelable ... 4
 3.3.2 Soluble .. 4

4 CHEMICAL COMPOSITION 4
 4.1 Resin Systems .. 4
 4.1.1 Solvent Borne .. 4
 4.1.2 Waterborne ... 4
 4.1.3 100% Solids ... 4
 4.1.4 Solvent Free Systems 5
 4.2 Pigments and Fillers 5
 4.2.1 Matting Agents ... 5
 4.2.2 Fillers ... 5
 4.3 Photoinitiators .. 5
 4.4 Other Components ... 5
 4.5 Flame-Retardants ... 6
 4.6 Curing Systems ... 6

5 SOLDER MASK PROPERTIES 6
 5.1 Materials Characterization Tests vs. Performance on Products 6
 5.2 Solder Mask Test Method History 6
 5.3 Chemical Properties of Cured Solder Mask 7
 5.3.1 Resistance to Solvents/Fluxes 7
 5.3.2 Corrosion Resistance 8
 5.3.3 Degree of Cure .. 8
 5.3.4 Permeability to Moisture 8
 5.3.5 Moisture Absorption 8
 5.3.6 Permeability to Gasses 8
 5.3.7 Outgassing ... 8
 5.3.8 Nonnutrient .. 8
 5.3.9 Hydrolytic Stability 9
 5.3.10 Pressurized Steam Resistance (Pressure Cooker Test) ... 9
 5.3.11 Ionic Contamination 9
 5.3.12 Flammability .. 9
 5.4 Thermal Properties of Cured Solder Mask 9
 5.4.1 Thermal Stress/Cycling 9
 5.4.2 Thermal Shock .. 9
 5.4.3 Thermal Degradation 9
 5.4.4 Thermal Conductivity 10
 5.4.5 Maximum Operating Temperature 10
 5.4.6 CTE ... 10
 5.4.7 Glass Transition Temperature (Tg) 10
 5.5 Mechanical Properties of Cured Solder Mask 10
 5.5.1 Thickness .. 10
 5.5.2 Adhesion .. 10
 5.5.3 Abrasion Resistance 11
 5.5.4 Cracking and Flaking 11
 5.5.5 Shrinkage .. 11
 5.5.6 Hardness ... 11
 5.5.7 Machineability .. 11
 5.5.8 Flexibility .. 11
 5.5.9 Young’s Modulus ... 11
 5.5.10 Poisson Ratio ... 11
 5.6 Visual Appearance (Gloss) 12
 5.6.1 Color, Opacity and Transparency 12
 5.7 Electrical Properties of Cured Solder Mask 12
 5.7.1 Dielectric Strength 12
 5.7.2 Dielectric Constant 12
 5.7.3 Dissipation Factor (Loss Tangent) 13
 5.7.4 SIR/Resistivity .. 13
 5.7.5 Moisture and Insulation Resistance (M&IR) 13
 5.7.6 Volume Resistivity 13
9 INDUSTRY SPECIFICATIONS AND STANDARDS ... 55

9.1.1 IPC-SM-840 Class 1,2,3 vs. Class T&H ... 55

9.1.2 Change in Philosophy between IPC-SM-840B and IPC-SM-840C 56

9.2 Bellcore .. 56

9.3 IPC-6011 ... 56

9.4 IPC-6012 ... 57

9.5 IPC-6013 ... 57

10 HEALTH AND ENVIRONMENTAL CONSIDERATIONS 57

10.1 Air Issues .. 57

10.2 Water Issues ... 57

10.3 Solid/Hazardous Waste Issues ... 57

10.4 RoHS/WEEE/Halogen Free Issues .. 57

11 TROUBLESHOOTING METHODOLOGY .. 57

11.1 Surface Preparation Prior to Application ... 58

11.2 Solder Mask Imaging and Developing ... 58

11.3 Improper Cure ... 58

11.4 Materials Incompatibility .. 58

12 EDITORIALS ... 59

12.1 Process Change Ethics ... 59

12.2 Solder Mask from a Supplier Perspective ... 59

12.3 Solder Mask from a UL Perspective .. 59

12.4 Solder Mask from a User Perspective (PCB Shop) 60

12.5 Solder Masks from an OEM Perspective .. 60

13 CHALLENGES FOR SOLDER MASK TECHNOLOGY 60

13.1 High Frequency .. 60

13.1.1 Dielectric Constant (Dₖ) ... 61

13.1.2 Dissipation Factor (Dₗ) .. 61

13.2 Shrinking Scales/Thicknesses .. 61

13.3 Lead Free Solder Temperatures ... 61

13.4 Higher Operating Temperatures ... 62

13.5 Waterborne ... 62

13.6 Legends and Marking Inks ... 62

13.6.1 Photoimageable Systems ... 62

13.6.2 Ink Jet Systems ... 62

13.7 Large Fine Pitch BGA .. 62

13.8 Reduced Halogen .. 62

13.9 Laser Ablation .. 62

13.10 Environmental Regulations (RoHS) .. 62

13.11 Solder Mask for Flexible Cable Assembly 62

13.11.1 Performance Application Recommendations for Solder Mask over Flex 63

14 GLOSSARY OF TERMS FOR SOLDER MASK 63
Figures

Figure 5-1 Measurement of Light Reflection for Solder Mask ... 12
Figure 6-1 Towering Ratio for the Relation of Solder Mask Thickness to Solder Wetting 18
Figure 6-2 Dog Bone Via Plating .. 19
Figure 6-3 Examples of Type I Tented Vias (Single-Sided Protection Not Recommended) 19
Figure 6-4 Examples of Type II Tented and Covered Vias (Single-Sided Protection Not Recommended) ... 19
Figure 6-5 Examples of Type III Plugged Vias (Single-Sided Protection Not Recommended) ... 20
Figure 6-6 Examples of Type IV Plugged and Covered Vias (Single-Sided Protection Not Recommended) ... 20
Figure 6-7 Example of Type V Filled Via (Single-Sided Protection Not Recommended) 20
Figure 6-8 Examples of Type VI Filled and Covered Vias, Liquid Film Cover (Single-Sided Protection Not Recommended) ... 20
Figure 7-1 Typical Process Steps for Types of Solder Mask ... 21
Figure 7-2 Copper Surface after Pumice Brushing ... 24
Figure 7-3 Copper Surface after Pumice Jet ... 24
Figure 7-4 Copper Surface after Oxide Replacement Chemistry ... 24
Figure 7-5 Example of Curtain Coating ... 26
Figure 7-6 Image Growth and Undercut .. 30
Figure 7-7 Measurement of Total Undercut and Total Image Growth .. 30
Figure 7-8 An Example of Positive Undercut ... 30
Figure 7-9 Measurement for Positive Undercut ... 30
Figure 7-10 Undercut Resulting from Light Absorption in the Solder Mask Layer 31
Figure 7-11 UV Initiated Reaction ... 36
Figure 7-12 Resin and Hardener Reaction in Final Thermal Curing .. 37
Figure 7-13 Adhesion Loss Resulting from Insufficient Solder Mask Thickness 40
Figure 7-14 Adhesion Failure of Solder Mask ... 41
Figure 8-1 Example of Solder Balls on Solder Mask .. 49
Figure 8-2 Solder Ball Creating Short between Adjacent IC Leads .. 49
Figure 8-3 Solder Short Between Adjacent IC Leads ... 50
Figure 8-4 Relationship of Drop Diameter to Contact Angle for Surface Energy Measurement 54
Figure 8-5 Relationship of Flux Type to Wetting of Conformal Coating .. 54
Figure 9-1 Bellcore Comb Test Pattern ... 56
Figure 13-1 Dielectric Constant (Dk) vs. Frequency .. 61
Figure 13-2 Changes in Dissipation Factor (Df) with Frequency .. 61
Figure 13-3 Forecast Trend in IC Pitch Reduction ... 62

Tables

Table 4-1 Tradeoffs with Common Additives ... 6
Table 5-1 Test Method Comparison for Measuring Electrical Insulation Performance 14
Table 6-1 Typical Environmental Requirements for Automotive Applications 16
Table 7-1 Types of Equipment for Solder Mask Exposure .. 29
Table 7-2 Solder Mask Reaction Mechanism .. 36
Table 8-1 Soldering Process and Solder Mask Process Interaction Effects ... 52
1 INTRODUCTION

1.1 Background Solder masks are permanent protective coatings that perform a number of functions during the fabrication, assembly and end use of printed circuits. One of the main purposes of solder mask is to protect the circuitry from interacting with solder during the assembly process. A solder mask’s job isn’t solely restricted to the solder operation however, as it also helps to protect the laminate, holes and traces from collecting contaminants and from degrading during the service life of the circuit. It also acts as an insulator of known dielectric property between components and traces.

The main requirements of the solder mask (as a material qualification) are tested within the IPC-SM-840. However, increasing technical diversification created further testing needs. Not every technical requirement is relevant for every application and thus these requirements will not be part of a general material qualification. These properties are usually required for specific original equipment manufacturer’s (OEM) approvals. This solder mask handbook provides the reader with the background knowledge to make an educated decision if specific properties are required and how to test them. It also provides significant educational information about process influences.

1.2 Purpose The purpose of this handbook is to provide additional supporting information for IPC-SM-840 regarding solder mask types, processes, characteristics and properties in order to assist with the correct selection and use of the most appropriate material for the intended application. It should be read in conjunction with the solder mask manufacturer’s technical information and other solder mask specification documents, which may be relevant, such as those listed in Section 2.

1.3 Target Audience The target audience for this document are solder mask manufacturers, solder mask processing equipment manufacturers, printed circuit board (PCB) designers, manufacturers, assemblers and repair technicians, assembly equipment and ancillary chemical suppliers, and OEMs.

2 APPLICABLE DOCUMENTS

2.1 IPC

IPC-T-50 Terms and Definitions for Interconnecting and Packaging Electronic Circuits

IPC-SC-60 Post Solder Solvent Cleaning Handbook
IPC-SA-61 Post Solder Semi-Aqueous Cleaning Handbook
IPC-AC-62 Aqueous Post Solder Cleaning Handbook
IPC-CH-65 Guidelines for Cleaning of Printed Boards and Assemblies
IPC-PE-740 Troubleshooting for Printed Board Manufacture and Assembly
IPC-CC-830 Qualification and Performance of Electrical Insulating Compound for Printed Wiring Assemblies
IPC-HDBK-830 Guidelines for Design, Selection and Application of Conformal Coatings
IPC-SM-840 Qualification and Performance of Permanent Solder Mask for Printed Boards
IPC-1751 Generic Requirements for Declaration Process Management
IPC-1752 Materials Declaration Management
IPC-2221 Generic Standard on Printed Board Design
IPC-4761 Design Guide for Protection of Printed Board Via Structures
IPC-6011 Generic Performance Specification for Printed Boards
IPC 6012 Qualification and Performance Specification for Rigid Printed Boards
IPC 6013 Qualification and Performance Specification for Flexible Printed Boards

1. www.ipc.org
2. Current and revised IPC Test Methods are available on the IPC website (www.ipc.org/html/testmethods.htm).