Handbook and Guide to
Supplement J-STD-001

Developed by the IPC-HDBK-001 Task Group (5-22F) of the Assembly and Joining Committee (5-20) of IPC

Supersedes:
IPC-HDBK-001E - February 2012
IPC-HDBK-001 w/Amendments 1 & 2 - October 2005
IPC-HDBK-001 w/Amendment 1 - December 2000
IPC-HDBK-001 - March 1998

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
Table of Contents

0.1 GENERAL ......................................................... 1
0.1.1 Scope ....................................................... 1
0.1.2 Purpose ..................................................... 1

0.2 FORMAT (Using This Handbook) ..................... 1

1 GENERAL ................................................................. 2
1.1 Scope ........................................................... 2
1.2 Purpose .......................................................... 2
1.3 Classification .................................................... 2
1.4 Measurement Units and Applications .................. 3
1.4.1 Verification of Dimensions ............................... 3
1.5 Definition of Requirements ................................ 3
1.5.1 Hardware Defects and Process Indicators .......... 4
1.5.2 Material and Process Nonconformance ............... 4
1.6 General Requirements ....................................... 4
1.7 Order of Precedence ......................................... 4
1.7.1 Conflict ....................................................... 4
1.7.2 Clause References .......................................... 4
1.7.3 Appendices .................................................. 5
1.8 Terms and Definitions ....................................... 5
1.8.1 Disposition .................................................. 5
1.8.2 Electrical Clearance ....................................... 5
1.8.3 FOD (Foreign Object Debris) ......................... 5
1.8.4 High Voltage ................................................ 5
1.8.5 Manufacturer (Assembler) .............................. 5
1.8.6 Objective Evidence ....................................... 5
1.8.7 Process Control ............................................ 5
1.8.8 Proficiency .................................................. 6
1.8.9 Solder Destination Side ................................. 6
1.8.10 Solder Source Side ....................................... 6
1.8.11 Supplier ..................................................... 6
1.8.12 User .......................................................... 6
1.8.13 Wire Overwrap ............................................ 6
1.8.14 Wire Overlap .............................................. 6
1.9 Requirements Flowdown ...................................... 6
1.10 Personnel Proficiency ....................................... 7
1.11 Acceptance Requirements .................................. 7
1.12 General Assembly Requirements .......................... 7
1.13 Miscellaneous Requirements ............................. 7
1.13.1 Health and Safety ........................................ 7
1.13.2 Procedures for Specialized Technologies ........... 7

2 APPLICABLE DOCUMENTS ........................................ 8
2.1 EIA ............................................................ 8

2.2 IPC ............................................................. 8
2.3 Electrostatic Discharge Association .................... 9

3 MATERIAL, COMPONENTS, AND EQUIPMENT REQUIREMENTS ................................. 9
3.1 Materials ....................................................... 9
3.2 Solder ........................................................... 10
3.2.1 Solder – Lead Free ......................................... 12
3.2.2 Solder Purity Maintenance .............................. 18
3.3 Flux .............................................................. 20
3.3.1 Flux Application ............................................ 23
3.4 Solder Paste .................................................... 23
3.4.1 Solder Powder .............................................. 24
3.4.2 Particle Shape Effects .................................... 24
3.4.3 Solder Particle Size Effects ............................. 24
3.4.4 Oxide Content in Solder Paste ......................... 24
3.4.5 Metals Content ............................................. 24
3.4.6 Paste Viscosity .............................................. 25
3.4.7 Determination of Correct Paste Volume ............. 25
3.5 Solder Preforms .............................................. 26
3.6 Adhesives ...................................................... 26
3.7 Chemical Strippers ........................................... 26
3.8 Components .................................................. 27
3.8.1 Component and Seal Damage ......................... 27
3.8.2 Coating Meniscus ......................................... 27
3.9 Soldering Tools and Equipment ......................... 27

4 GENERAL SOLDERING AND ASSEMBLY REQUIREMENTS ............................................. 28
4.1 Electrostatic Discharge (ESD) ............................. 28
4.2 Facilities ....................................................... 29
4.2.1 Environmental Controls ................................ 29
4.2.2 Temperature and Humidity ............................. 29
4.2.3 Lighting ...................................................... 29
4.2.4 Field Assembly Operations ............................. 29
4.3 Solderability .................................................... 29
4.4 Solderability Maintenance ................................... 30
4.5 Removal of Component Surface Finishes ............. 30
4.5.1 Gold Removal .............................................. 30
4.5.2 Other Metallic Surface Finishes Removal .......... 31
4.6 Thermal Protection .......................................... 31
4.7 Rework of Non solderable Parts ......................... 32
4.8 Preprocessing Cleanliness Requirements ............. 32
4.9 General Part Mounting Requirements .................. 32
4.9.1 General Requirements .................................... 32
8 CLEANING PROCESS REQUIREMENTS .......... 75
 8.0.1 Process Residues and Their Impact on Product Reliability .......... 76
 8.0.2 Historical Perspective on Cleaning and Cleaning Processes .......... 76
 8.0.3 Magnification and Visual Inspection for Cleanliness ..................... 77
 8.0.4 J-STD-001F Section 8 Demystified .......... 78
 8.1 Cleanliness Exemptions ................. 78
 8.2 Ultrasonic Cleaning ...................... 79
 8.3 Post Solder Cleanliness .......... 79
 8.3.1 Foreign Object Debris (FOD) .......... 79
 8.3.2 Flux Residue and Other Ionict or Organic Contaminants .......... 79
 8.3.3 Post Soldering Cleanliness Designator ........... 80
 8.3.4 Cleaning Option .......... 80
 8.3.5 Test for Cleanliness .......... 80
 8.3.6 Testing .......... 80
 8.4 Frequently Asked Questions on Cleanliness .................. 83

9 PCB REQUIREMENTS ......................... 88
 9.1 Printed Circuit Board Damage .......... 88
 9.1.1 Blistering/Delamination .......... 88
 9.1.2 Weave Exposure/Cut Fibers .......... 88
 9.1.3 Haloing .............................................. 89
 9.1.4 Edge Delamination ...................... 89
 9.1.5 Land/Conductor Separation .......... 89
 9.1.6 Land/Conductor Reduction in Size .......... 89
 9.1.7 Flexible Circuitry Delamination .......... 89
 9.1.8 Flexible Circuitry Damage .......... 89
 9.1.9 Burns .............................................. 89
 9.1.10 Non-Soldered Edge Contacts .......... 89
 9.1.11 Measles ........................................ 89
 9.1.12 Crazing ........................................ 89
 9.2 Marking ........................................ 90
 9.3 Bow and Twist (Warpage) .......... 90
 9.4 Depanelization .................................. 90

10 COATING, ENCAPSULATION AND STAKING (ADHESIVE) .......... 90
 10.0 Introduction ........................................ 90
 10.1 Conformal Coatings – Materials .......... 91
 10.1.1 Acrylic (AR) .......... 91
 10.1.2 Epoxy (ER) .......... 91
 10.1.3 Silicone (SR) .......... 91
 10.1.4 Polyurethane (UR) .......... 92
 10.1.5 Paraxylylene (XY) .......... 92
 10.1.6 Two-Part Systems (Acrylic/Polyurethane and Other Combinations) .......... 93
 10.2 Conformal Coating – Masking .......... 93
 10.3 Conformal Coating – Application .......... 93
 10.4 Encapsulation .......... 94
 10.4.1 Application .......... 94
 10.4.2 Performance Requirements .......... 94
 10.4.3 Rework of Encapsulant Material .......... 95
 10.4.4 Encapsulant Inspection .......... 95
 10.5 Staking .......... 95

February 2016 IPC-HDBK-001F
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5.1</td>
<td>Staking – Application</td>
<td>103</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Staking – Adhesive</td>
<td>103</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Staking – Inspection</td>
<td>103</td>
</tr>
<tr>
<td>11</td>
<td>WITNESS (TORQUE/ANTI-TAMPERING) STRIPE</td>
<td>103</td>
</tr>
<tr>
<td>12</td>
<td>PRODUCT ASSURANCE</td>
<td>104</td>
</tr>
<tr>
<td>12.1</td>
<td>Hardware Defects Requiring Disposition</td>
<td>104</td>
</tr>
<tr>
<td>12.2</td>
<td>Inspection Methodology</td>
<td>104</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Process Verification Inspection</td>
<td>104</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Visual Inspection</td>
<td>104</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Sampling Inspection</td>
<td>105</td>
</tr>
<tr>
<td>12.3</td>
<td>Process Control Requirements</td>
<td>105</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Opportunities Determination</td>
<td>106</td>
</tr>
<tr>
<td>12.4</td>
<td>Statistical Process Control</td>
<td>106</td>
</tr>
<tr>
<td>13</td>
<td>REWORK AND REPAIR</td>
<td>106</td>
</tr>
<tr>
<td>13.1</td>
<td>Rework</td>
<td>106</td>
</tr>
<tr>
<td>13.2</td>
<td>Repair</td>
<td>106</td>
</tr>
<tr>
<td>13.3</td>
<td>Post Rework/Repair Cleaning</td>
<td>106</td>
</tr>
<tr>
<td>APPENDIX GUIDE</td>
<td>Guidelines for Soldering Tools and Equipment</td>
<td>107</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>Minimum Electrical Clearance – Electrical Conductor Spacing</td>
<td>110</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>J-STD-001 Guidance on Objective Evidence of Material Compatibility</td>
<td>111</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>Cross Reference Listing by Revision</td>
<td>112</td>
</tr>
<tr>
<td>ACRONYM INDEX</td>
<td></td>
<td>119</td>
</tr>
</tbody>
</table>

**Figures**

- Figure 3-1: Phase Diagram for Eutectic Solder
- Figure 3-2: Eutectic Solder Microstructure
- Figure 3-3: Eutectic Solder Microstructure
- Figure 3-4: Solder Wire Core Flux Comparison
- Figure 3-5: Solder Alloy Fracture Toughness Testing Results
- Figure 3-6: Solder Alloy Drop Shock Testing Results
- Figure 3-7: Lead-Free Solder Alloy/Component Surface Finish Incompatibility Example
- Figure 3-8: left: Non-Uniform Solder Joint Microstructure, right: Incomplete Solder Joint Reflow (Head-on-Pillow)
- Figure 3-9: Component Degradation Due to Lead-Free Soldering Process Incompatibility
- Figure 3-10: Lead-Free Solder Alloy Attack of Wave Solder Equipment
- Figure 3-11: Copper Erosion Due to Lead-Free Soldering Processes
- Figure 3-12: Coating Meniscus on a Lead
- Figure 4-1: Thermal Shunt
- Figure 4-2: Component Bridging
- Figure 5-1: Compound Wire Stripper
- Figure 5-2: Stripped Wire
- Figure 5-3: Antiwicking Tool
- Figure 5-4: Flange Damage
- Figure 5-5: Flare Angles
- Figure 5-6: Terminal Mounting – Mechanical
- Figure 5-7: Terminal Mounting
- Figure 5-8: Stress Relief
- Figure 5-9: Wire Wrap
- Figure 5-10: Wire Wrap Around Terminal Post
- Figure 5-11: Continuous Runs
- Figure 5-12: Wire and Lead Wrap Around
- Figure 5-13: Side Route Connections and Wrap on Bifurcated Terminal
- Figure 5-14: Bottom Route Terminal Connection
- Figure 5-15: Top Route Terminal Connection
- Figure 5-16: Hook Terminal Connections
- Figure 5-17: Pierced or Perforated Terminal Wire Placement
- Figure 5-18: Solder Height
- Figure 5-19: Jumper Wires
- Figure 6-1: Component Lead Stress Relief Examples
- Figure 6-2: Side Mounting
- Figure 6-3: Vertical Mounting of Freestanding Components
- Figure 6-4: Mounting of Components with Dual Non-Axial Leads
- Figure 6-5: Typical Configuration of Components with Dual Non-Axial Leads
- Figure 6-6: End Mounting
- Figure 6-7: Mounting with Feet on Standoffs
- Figure 6-8: Non-Resilient Footed Standoffs
- Figure 6-9: Lead Forming Forces
- Figure 6-10: Lead Bends
- Figure 6-11: Through-Hole Mounting Methods
- Figure 6-12: Via Fill
- Figure 7-1: Surface Mount Device Lead Forming
- Figure 7-2: DIP Lead Forming
- Figure 7-3: Surface Mounted and Butt/I Mounted DIPS
- Figure 8-1: Burned PCB
- Figure 8-2: Dendrites
- Figure 8-3: Solder Mask Surface Appearance
Table 1-1 Metric Prefixes .................................................... 3
Table 1-2 Conversion Formulae .......................................... 3
Table 3-1 Common Physical Property Values for Eutectic or Near Eutectic Tin/Lead Solder .......... 12
Table 3-2 Lead-Free Solder Alloys .................................... 13
Table 3-3 Lead-Free Solder Alloys and Their Melting Temperatures ........................................ 13
Table 3-4 Levels of Allowable Solder Impurities for Sn60Pb40 and Sn63Pb37 Solders (Weight %) .............................................. 18
Table 3-5 Test Requirements for Flux Classifications (from J-STD-004B w/Ammendment 1) ........ 22
Table 3-6 Flux Identification System (from J-STD-004B w/Ammendment 1) ................................. 22
Table 3-7 Mesh Size vs. Particle Size for Solder Powders Used in Solder Paste .......................... 24
Table 3-8 Recommended Viscosities of Solder Pastes ..... 25
Table 3-9 Effects of Parameters on Viscosity ............... 25
Table 4-1 Baking Times and Temperatures (Bare/Unpopulated PCB) ........................................ 35
Table 4-2 Common Screen Parameters ................................. 39
Table 4-3 Common Screening Problems and Solutions ... 39
Table 4-4 Physical Properties of Vapor Phase Reflow Fluids .................................................. 41
Table 4-5 Advantages and Disadvantages of Vapor Phase Soldering ........................................... 41
Table 4-6 Thermal Data for Electronic Materials ............. 42
Table 4-7 Problems and Solutions in Vapor Phase Soldering .................................................. 43
Table 4-8 IR Radiation ....................................................... 44
Table 4-9 Advantage and Disadvantages of IR Soldering .................................................... 44
Table 4-10 Characteristics of Infrared Sources for SMT Soldering .............................................. 44
Table 5-1 Allowable Strand Damage ................................. 50
Table 5-2 Hook Terminal Wire Placement ......................... 56
Table 5-3 Pierced or Perforated Terminal Wire Placement ................................................ 56
Table 6-1 Component to Land Clearance ......................... 63
Table 6-2 Components with Spacers ......................... 65
Table 6-3 Lead Bend Radius .............................................. 66
Table 6-4 Protrusion of Leads in Supported Holes .......... 68
Table 6-5 Protrusion of Leads in Unsupported Holes ...... 68
Table 8-1 Equivalency Values from MIL-STD-2000 .......... 82
Table 8-2 Flux Identification .............................................. 84
Table 10-1 Preferred Conformal Coating Removal Methods ................................................. 102
0.1 GENERAL

0.1.1 Scope  This Handbook is a companion reference to the J-STD-001 Requirements for Soldered Electrical and Electronic Assemblies (Standard) and is intended to provide supporting information.

Additional detailed information can be found in documents referenced within the Standard (and this Handbook). Users are encouraged to reference those documents to better understand the applicable subject areas.

Although this Handbook uses mandatory terminology (e.g., shall, must, etc.), nothing within this Handbook is considered mandatory unless this document is specified as a mandatory requirement in the contract documentation.

The intent of this Handbook is to capture “how and why” information and give more background for the specification limits and how they were derived. In addition, other supporting information is provided to give a broader understanding of the process considerations needed for the production of acceptable hardware. The target user of this Handbook is a Process or Manufacturing Engineer.

NOTE: The revision of this Handbook (“F”) was revised in an attempt to align with the base document/Standard (J-STD-001 also rev “F”). Please check for the latest revision or for any amendment(s) that may include changes that could alter: explanations for how and why, or more detailed discussions on criteria.

0.1.2 Purpose  The Handbook describes materials, methods, and verification criteria that, when applied as recommended or required, will produce quality soldered electrical and electronic assemblies. The intent of the Handbook is to explain the “how-to,” the “why,” and fundamentals for these processes, in addition to implementing control over processes rather than depending on end-item inspection to determine product quality.

The J-STD-001 and the IPC-HDBK-001 do not exclude any acceptable process used to make the electrical connections, as long as the methods used will produce completed solder joints conforming to the acceptability requirements of the Standard.

0.2 FORMAT (Using This Handbook)

This Handbook provides guidance on the J-STD-001F requirements. The section and paragraph numbers in this Handbook refer and correspond to the section and paragraph numbers in J-STD-001F. However, the information provided in this Handbook is applicable to Users of any previous version of J-STD-001.

Although this document will not provide discussion on each of the differences between J-STD-001F and J-STD-001FS, it may provide information on certain topics addressed in J-STD-001FS, i.e., lead-free mitigation, that may need to be considered in a general soldering process. This information will be included in the applicable section of this Handbook and not highlighted in any manner.

A cross reference listing, provided as Appendix D to this Handbook, will assist Users with identifying related paragraphs in previous revisions of J-STD-001. This cross reference listing includes identification of the associated Space Applications Electronic Hardware Addendum paragraphs for revisions E (ES) and D (DS).

Information concerning the appendices in J-STD-001 is either addressed in the body of this Handbook or covered more thoroughly in another document. An appendices guide is included at the end of Section 13 that links the topics discussed in the appendices of J-STD-001 to the appropriate supplemental information.

Where used verbatim, text that is directly quoted from a standard is italicized. In this Handbook, the word “Standard” refers specifically to J-STD-001 Revision F.

NOTE: References in the text of this Handbook (not text quoted from a Standard) referring only to Sections, Tables, and Figures in this Handbook will be annotated accordingly (see Example 1). If the reference is to a Section, Table, or Figure in the Standard, it will be followed by “of the Standard” (see Example 2).

Example 1: For more information on lead trimming, see 5.2.0.5.

Example 2: For more information on surface mount components, see Table 7-2 of the Standard.