Bare Substrate Electrical Test Data Format

Developed by the IPC-D-356 Task Group (2-11c) of the Data Generation and Transfer Committee (2-10) of IPC

Supersedes:
IPC-D-356A - January 1998
IPC-D-356 - March 1992

Users of this standard are encouraged to participate in the development of future revisions.

Contact:
IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
Table of Contents

1 SCOPE AND OBJECTIVE .. 1
 1.1 Format Compatibility ... 1
 1.2 Goal of Revision B ... 1
 1.3 Changes Between Revision A and B 1
 1.3.1 Test Area ... 1
 1.3.2 Complex Record Changes 1
 1.3.3 Polygon Copper Areas .. 1
 1.3.4 Extended Line Length for Certain Records 2
 1.3.5 New Shape Format ... 2
 1.3.6 New End-Point Optimization Marking 2
 1.3.7 New Form for Test Measurement Data 2
 1.4 Data Records and Their Organization 2
 1.5 IPC-D-356B File Usage 2
 1.6 Interpretation ... 2

2 APPLICABLE DOCUMENTS .. 2
 2.1 IPC ... 2
 2.2 American National Standards Institute 3
 2.3 International Electrotechnical Commission (IEC) International Standards Organization (ISO) 3

3 TERMS AND DEFINITIONS ... 3
 3.1 Field ... 3
 3.2 Record ... 3
 3.2.1 Comment Record .. 3
 3.2.2 Data Record(s) .. 3
 3.2.3 End of Job Record .. 3
 3.2.4 Parameter Records .. 3
 3.3 Physical Layer ... 3
 3.4 Job Data ... 3
 3.4.1 Feature .. 3
 3.4.2 Datum Reference .. 3
 3.4.3 Modal Form .. 4
 3.4.4 Operation Codes .. 4
 3.4.5 End-Point Optimization .. 4
 3.4.10 Adjacency .. 4
 3.5 General Requirements .. 4
 3.5.1 Data Hierarchy ... 4
 3.5.2 Basic Record Types ... 4
 3.5.3 Compatibility .. 4
 3.5.4 Fixed and Field Delimited Formats 4
 3.5.5 Data Set Descriptions ... 5
 3.5.6 Data Sorting .. 5

4 GENERAL REQUIREMENTS .. 4
 4.1 Job Data Organization .. 5
 4.2 Line Termination ... 5
 4.3 Transfer Media and Data Formats 5

5 ORGANIZATION OF THE IPC-D-356B FILE 5
 5.1 Organization of the Job Data File 6

6 PARAMETER RECORDS AND JOB DATA FILE ORGANIZATION 6
 6.1 Parameter JOB ... 7
 6.2 Parameter CODE ... 7
 6.3 Parameter UNITS ... 7
 6.4 Parameter TITLE ... 7
 6.5 Parameter NUM ... 7
 6.6 Parameter REV ... 8
 6.7 Parameter VER ... 8
 6.8 Parameter IMAGE .. 8
 6.9 Parameter REMOVED_CONDUCTORS 8
 6.10 Parameter NNAME .. 9
 6.11 Parameter TEST .. 9
 6.12 Parameter SECONDARY_SIDE_LAYER 9
 6.13 Parameter GRID_UNITS ... 9
 6.14 Parameter SOURCE .. 10
 6.15 Parameter ADJACENCY ... 10
 6.16 Parameter ADJACENCY Syntax 10
 6.17 Parameter BOARD_THICKNESS 10

7 COMMENT RECORDS AND ALLOWED CHARACTERS 10
 7.1 Allowable Character Set ... 10
 7.2 Comment Records Utilizing 2-Byte Characters 10

8 ELECTRICAL TEST RECORD STRUCTURE 11
 8.1 Operation Code Definition (Columns 1-3) 11
 8.2 Signal Name Identifier (Columns 4-20) 11
 8.2.1 Columns 4-17 ... 11
 8.2.2 Complex Record End-Point Designator 12
 (Columns 18-20) ... 12
 8.3 Component Name Identifier 12
 (Columns 21-31) ... 12
12 ELECTRICAL TEST MEASUREMENT DATA .. 30

12.1 Controlled Impedance Test Information .. 31

12.1.1 Operation Code Definition (Columns 1-3) .. 31

12.1.2 Controlled Impedance Signal Identification Field (Columns 4-17) 31

12.1.3 Unassigned Field (Column 18) .. 31

12.1.4 Test Side Indicator (Columns 19-21) .. 31

12.1.5 Unassigned Field (Column 22) .. 32

12.1.6 Measurement Terminal Location (Columns 23-38) 32

12.1.7 Unassigned Field (Column 39) .. 32

12.1.8 Layer Indicator (Columns 40-42) ... 32

12.1.9 Op-code 350 - Columns 43-78 ... 32

12.1.10 Op-code 050 - Columns 43-72 ... 32

12.1.11 Op-code 051 - Columns 43-78 ... 33

12.1.12 Layer Indicator (Columns 40-42) ... 33

12.1.13 Measurement Terminal Location (Columns 23-38) 33

12.2 High Voltage Test Information ... 33

12.2.1 Operation Code Definition (Columns 1-3) .. 33

12.2.2 High Voltage Measurement Records (Columns 4-42) 33

12.2.3 Unassigned Field (Column 43) .. 33

12.2.4 Applied High Voltage Value (Columns 44-47) .. 33

12.2.5 Unassigned Field (Column 48) .. 34

12.2.6 High Voltage Type Indicator (Column 49) ... 34

12.2.7 Unassigned Field (Column 50) .. 34

12.2.8 High Voltage Duration (Columns 51-55) ... 34

12.2.9 Unassigned Field (Column 56) .. 34

12.2.10 Maximum Leakage Current (Columns 57-61) .. 34

12.2.11 High Voltage Measurement Reference Terminal 34

12.3 Embedded and On-Board Passive Components and Measurements 34

12.3.1 Operation Code Definition (Columns 1-3) .. 34

12.3.2 Columns 3-42 ... 35

12.3.3 Primary Records 370, 371, 380 and 381 (Columns 43 and beyond) 35

12.3.4 Continuation Records 070, 071, 080 and 081 (Columns 43-84) 36

13 SPECIAL AND NON-TEST FEATURES ... 37

13.1 Operation Code Definition (Columns 1-3) ... 37

13.2 Feature Type Name (Columns 4-17) ... 37

13.3 Columns 18-38 ... 37

13.4 Columns 39-77 ... 37

14 STEPPED IMAGES USING THE IMAGE PARAMETER ... 37

14.1 Defining the Primary Image .. 37

14.2 Defining a Stepped Image .. 37

14.2.1 Stepped Image Translation Record .. 38

14.3 Rules of Step and Repeat .. 38

14.3.1 Allowed Operations .. 38

14.3.2 Mirror ... 38

14.3.3 Rotation ... 38

14.3.4 Offset .. 38

14.4 Order of Operations ... 38

Appendix A Recommended File Content ... 39

Appendix B Complete List of Op-Codes ... 40

Appendix C Graphical Examples ... 41

Appendix D ISO Code Character Set ... 51

Appendix E Native Language Codes ... 52

Appendix F End-Point Optimization .. 53
1 SCOPE AND OBJECTIVE

This standard describes a data format for transmitting bare board electrical test information. The material contained herein is intended to convey requirements, guidelines, and examples necessary to provide the data structures and concepts for bare board electrical test information in digital form, including data suitable for computer aided repair. When used as a netlist input to test data processing, the receiver of IPC-D-356B data will determine test point assignments and positioning.

Being essentially a netlist test format, this standard has been crafted to represent interconnect substrate graphics and test in a balanced way. Although substantial support is given to convey the graphical image of conductor shapes, the standard is not “graphically correct.” It is not intended to serve as a means to produce artwork or other board fabrication tools, but rather serve as a useful aid in conducting electrical test, analysis and repair.

1.1 Format Compatibility Although the concepts detailed in this standard may be supplemented by descriptions defined in other companion IPC Standards, it is intended that this standard be suitable for use as a stand alone description of bare board test and repair data for an individual circuit or job. Refer to other standards in the family for other areas of applicability.

IPC-D-356B is not backward compatible to Revision A. The VER parameter allows this version to be distinguished from previous versions.

1.2 Goal of Revision B Despite the widespread acceptance of Revision A, it became clear over time that there were many places where IPC-D-356A format was subject to interpretation and ambiguity. The intent of Revision B is to remove ambiguities, improve graphics representation and reduce file size. Desired graphical improvements consist of better representation of pads and test areas, clear solder mask determination and support for contours or polygon conductor areas. Realization of these goals took into consideration the following requirements:

• Keep it simple, at least as simple as is possible.
• Minimize the difficulty in programming input or output translators.
• Make the file as humanly readable as possible.
• While attempting to improve the graphical capability of the standard, do not attempt to make it “graphically correct.”
• Support graphical data in commonly occurring forms to prevent the need for CAD or CAM systems from exploding a compact representation of a graphical shape into a verbose statement of the same basic shape.

Every effort has been made to eliminate data redundancy and minimize file size. Extensive use of examples will hopefully make this version even more “user friendly” than the previous revision.

1.3 Changes Between Revision A and B

1.3.1 Test Area Revision B contains a paradigm shift in the definition of pads and what is a “testable pad area.” Revision A supported round or rectangular pad shapes that may or may not be covered with soldermask. Although this approach was useful for some time, the advent of unusually shaped pads, and SMD pads defined totally or partially by soldermask render this definition imprecise.

To address these problems, two significant changes were made. The traditional “pad” has been replaced with two new types of records, “test area” and “non-test area” records. A test area is literally an area on a pad (often the entire pad), that might be contacted during electrical test. By definition, it is entirely free from soldermask, although it may or may not be a mid-point. By supporting “test areas” in simple shapes, the definition of complex underlying “copper” can be left to other types of “graphics only” records such as trace segments, polygon copper areas or simple non-test areas of copper. This makes the interpretation of where the actual test point should be located within the test area much more straightforward for the receiver of IPC-D-356B data.

1.3.2 Complex Record Changes In addition to changes related to test areas, complex records have been redefined in a more general way to represent all inter-layer connections in nets. In IPC-D-356A, complex records were introduced to support “via in pad” constructions while blind vias and buried vias had their own op-code and syntax. Revision B combines all these records into one format that allows the definition of all the elements of a padstack. This definition is more in keeping with the notion that the receiver of a IPC-D-356B netlist should be responsible for assigning the particular test point location within a test area. If it is desired to avoid contacting an integral hole, or perhaps preferentially test a plated hole instead of the pad, the data is there to make that determination.

1.3.3 Polygon Copper Areas Revision A lacked a means to represent contours or polygon areas of copper. To improve the graphical representation of the board, and to minimize the explosion of contours into millions of drawn