Design Guidelines for Reliable Surface Mount Technology Printed Board Assemblies
Table of Contents

1.0 SCOPE ... 1
1.1 Purpose .. 1
1.2 Design Philosophy ... 1
1.2.1 Establishing the Design Team 1
1.2.2 Defining Reliability Requirements 1
1.2.3 Understanding the Product Life Cycle 1
1.2.4 Defining the Product Environment 2
1.3 Document Organization .. 2
1.3.1 Applicable Documents 2
1.3.2 Design for Reliability of SM Assemblies 2
1.3.3 Substrates ... 5
1.3.4 Components ... 6
1.3.5 Attachment Materials and Coatings 6
1.3.6 Assembly Processes and DfM 6
1.3.7 Testing .. 7
1.4 Terms and Definitions ... 7

2.0 APPLICABLE DOCUMENTS 5
2.1 Institute for Interconnecting and Packaging Electronic Circuits (IPC) 5
2.2 Electronic Industries Association 5
2.3 Joint Industry Standards 5

3.0 DESIGN FOR RELIABILITY FOR SURFACE MOUNT ASSEMBLIES .. 5
3.1 Life Cycle Environment ... 5
3.1.1 Manufacturing Processes 5
3.1.2 Processing Temperature Excursions 5
3.1.3 Burn-In and Environmental Stress Screening (ESS) 6
3.1.4 Transport ... 6
3.1.5 Storage .. 6
3.1.6 Use Environments .. 6
3.1.7 Environmental Stresses 7
3.1.8 Temperature/Thermal 7
3.1.9 Cyclic Temperature Swings 7
3.1.10 Thermal Shock .. 7
3.1.11 Electrical ... 8
3.1.12 EMC/EMI ... 8
3.1.13 Mechanical Shock and Vibration 8
3.1.14 Insulation Resistance 9
3.1.15 Solvent Compatibility 10
3.1.16 Corrosion ... 10
3.1.17 External Radiation 10
3.1.18 Space Environment 10
3.2 Thermal Design ... 10
3.3 Printed Board Design and Layout 10
3.3.1 Thermal Design and Layout 11
3.3.2 Thermal Design and Conformal Coating 11
3.3.3 Land Patterns ... 11
3.3.4 Balance About Neutral Axis 11
3.3.5 Vias .. 11
3.3.6 Printed Board Trace Widths and Spaces 11
3.3.7 PTH and PTV Thermal Isolation/Relief 12
3.3.8 Test Pads ... 12
3.3.9 Spacing Between Parts 12
3.3.10 “Pads-Only” Design 12
3.3.11 Components with Reduced Clearances (Traces Under) 13
3.3.12 Components with Reduced Clearance and Open Vias 13
3.4 Coefficient of Thermal Expansion (CTE) and CTE-Mismatch 13
3.5 Solder Joint Reliability 14
3.5.1 Primary Design Parameters 14
3.5.2 Secondary Design Parameters 15
3.6 Plated-Through-Hole and Via Reliability 16
3.7 DfR of SM Solder Attachments 16
3.8 DfR of Insulation Resistance 16

4.0 SUBSTRATES .. 16
4.1 General Substrate Categories 16
4.2 Substrates and Their Functions: 16
4.3 Moisture and its Effects on Polymer Substrates 17
4.4 Coefficient of Thermal Expansion (CTE) of Polymer Systems 17
4.5 Constraining Cores in Substrates 17
4.5.1 Printed Board Stiffness and Damping 19
4.6 Flexible Printed Board with Metal Support Plane 19
4.7 Discrete Wire Structures with Metal Support Plane 19
4.8 Outgassing of Polymer Substrates 19
4.9 Assembly Process Effects on Polymer Substrates 19
4.10 Printed Board Solderability 19
4.11 Design for Reliability of Plated-Through-Hole Vias (PTVs) 19

5.0 GENERAL COMPONENT SELECTION CONSIDERATIONS .. 19
5.1 Component Selection Strategy 20
5.2 Package Leadframe and Local Materials 20
8.2 Testing Philosophy

9.0 REFERENCE DOCUMENTS

9.1 General Books on SMT Process and Design

9.2 SMT Soldering Process Technical Details

9.3 SMT Solder Paste

9.4 SMT Cleaning

9.5 Solder Joint Reliability

9.6 Design of Electronic Packages and Packaging

9.7 EMC, High Speed Transients and Electrical Overstress

9.8 ESD

9.9 Scanning Acoustic Microscopy

9.10 Plastic Package Cracking

9.11 Solder Joint Metallurgy and Etching

9.12 PWA Thermal Design

9.13 Substrate Fabrication Information

9.14 Component Derating, Applications, Qualification

9.15 Testability, Manufacturability

9.16 Vibration, Shock

9.17 Accelerated Life Testing

9.18 Solder, Solderability, Soldered Assembly Quality

9.19 Solder Mask and Conformal Coating

9.20 General Reliability

Appendix A Design for Reliability (DfR) of Solder Attachments

A-1.0 SURFACE MOUNT SOLDER ATTACHMENT RELIABILITY

A-2.0 DAMAGE MECHANISMS AND FAILURE

A-2.1 Solder Joints and Attachment Types

A-2.2 Global Expansion Mismatch

A-2.3 Local Expansion Mismatch

A-2.4 Internal Expansion Mismatch

A-2.5 Solder Attachment Failure

A-3.0 RELIABILITY PREDICTION MODELING

A-3.1 Creep-Fatigue Modeling

A-3.2 Damage Modeling

A-3.3 CAVEAT 1 — Solder Joint Quality

A-3.4 CAVEAT 2 — Large Temperature Excursions

A-3.5 CAVEAT 3 — High-Frequency/Low-Temperatures

A-3.6 CAVEAT 4 — Local Expansion Mismatch

A-3.7 CAVEAT 5 — Very Stiff Leads/Very Large Expansion Mismatches
Appendix A Design for Reliability (DfR) of Insulation Resistance

A.3.8 Statistical Failure Distribution and Failure Probability 40
A-3.9 Multiple Cyclic Load Histories ... 41
A-3.10 System Reliability Evaluation ... 41

A-4.0 DfR-PROCESS ... 42

A-5.0 CRITICAL FACTORS FOR EMERGING ADVANCED TECHNOLOGIES 42
A-5.1 Flip Chip on Laminate ... 42
A-5.2 Area Arrays (BGA, CGA) ... 43
A-5.3 Thin Packages (TSOP) ... 43

A-6.0 VALIDATION AND QUALIFICATION TESTS ... 44

A-7.0 SCREENING PROCEDURES .. 44
A-7.1 Solder Joint Defects ... 44
A-7.2 Screening Recommendations ... 45

A-8.0 STEP-BY-STEP NUMERICAL EXAMPLE RELATING REQUIRED DESIGN LIFE TO ACCELERATED RELIABILITY TEST RESULTS ... 45

A-9.0 REFERENCES ... 47

Appendix B Design for Reliability (DfR) of Plated-Through Via (PTV) Structures

B-1.0 PLATED-THROUGH VIA (PTV) RELIABILITY ISSUES 50
B-1.1 Copper Plating Process .. 50
B-1.1.1 Acid Copper Plating .. 50
B-1.1.2 Pyrophosphate Copper Plating ... 51
B-1.2 Material Properties ... 51
B-1.2.1 Tensile Properties .. 51
B-1.2.2 Ductility .. 51
B-1.2.3 Fatigue Behavior .. 51
B-1.3 Damage Mechanisms and Failure .. 52
B-1.3.1 PTV Quality .. 52
B-1.3.2 Impact of Assembly Processes and ESS Procedures 53
B-1.3.3 Impact of Test Procedures and Cyclic Operating Environments 54

B-2.0 RELIABILITY PREDICTION MODELING ... 54

B-3.0 DfR-PROCESS ... 56

B-4.0 CRITICAL FACTORS FOR EMERGING ADVANCED TECHNOLOGIES 57

B-5.0 VALIDATION AND QUALIFICATION TESTS ... 57

B-6.0 SCREENING PROCEDURES .. 57

B-7.0 REFERENCES ... 57

Appendix C Design for Reliability (DfR) of Insulation Resistance

C-1.0 INSULATION RESISTANCE DAMAGE MECHANISMS AND FAILURE 59
C-1.1 Surface Insulation Resistance (SIR) ... 59
C-1.2 Electrochemical Corrosion ... 59
C-1.3 Dendrite Growth ... 60
C-1.4 Conductive Anodic Filaments (CAF) .. 60

C-2.0 INSULATION RESISTANCE MODELING ... 60
C-2.1 Insulation Resistance Degradation ... 60
C-2.2 Conductive Anodic Filament Failure .. 61

C-3.0 DfR-PROCESS ... 61

C-4.0 CRITICAL FACTORS FOR EMERGING ADVANCED TECHNOLOGIES 62

C-5.0 VALIDATION AND QUALIFICATION TESTS ... 62
C-5.1 SIR Test Procedures ... 62
C-5.1.1 Factors Affecting SIR Readings Geometry .. 62

C-6.0 SCREENING PROCEDURES ... 63

C-7.0 REFERENCES ... 63

Appendix D Thermal Considerations

D-1.0 GENERAL .. 65

D-2.0 THERMAL ANALYSIS AT THE DEVICE LEVEL 65
D-2.1 The Ambient Temperature of an Electronic System (T_a) 65
D-2.2 The Temperature Rise of the Cooling Agent at the Device Level (ΔT_CA) 66
D-2.3 The Temperature Rise Inside the Device Boundary Layer (ΔT_BL) 66
D-2.4 The Temperature Rise Inside the Device Package (ΔT_P) 66
D-2.5 Thermal Wake (ΔT_TW) .. 66

D-3.0 DETERMINING THE SOLDER JOINTS TEMPERATURE SWINGS 66

D-4.0 COOLING OF ELECTRONIC EQUIPMENT ... 67
D-4.1 Radiation ... 67
D-4.2 Free Convection .. 67
D-4.3 Direct Forced Convection ... 67
D-4.4 Conduction Cooling ... 67
D-4.5 Heat Pipes ... 67
D-4.6 Direct Liquid Cooling ... 68
D-4.6.1 Direct Natural Convection Liquid Cooling .. 68
D-4.6.2 Direct Forced Liquid Cooling .. 68

D-5.0 PRODUCT THERMAL DESIGN .. 69
H-2.6 CLASS "4": Sensitivity Range 16,000 Volts
H-2.5 CLASS "3": Sensitivity Range 4,000 to
H-2.4 CLASS "2": Sensitivity Range 2,000 to
H-2.3 CLASS "1": Sensitivity Range 0 to

F-12.3 Solder Joints
F-12.2 Printed Board Conductor Design
F-12.1 Printed Board PTH/Vias

F-11.2.2 Separable Electrical Interconnections
F-11.2.1 Batteries
F-11.2 Separable Contacts (Relays, Switches,
F-11.1 Fuse

F-11.0 OTHER COMPONENTS

F-10.4 Linear Semiconductors
F-10.3 Digital Silicon Semiconductors
F-10.2 Digital Semiconductors
F-10.1 Light Emitting Semiconductor Diode (LED)

F-10.0 SEMICONDUCTORS

F-9.0 Inductor/Transformers

F-8.5 Variable Capacitors
F-8.4 Electrolytic Aluminum Capacitors
F-8.3 Solid Tantalum Capacitors

F-8.0 INDUCTOR/TRANSFORMERS

F-7.7 Automatic Optical Inspection (AOI)
F-7.6 Glow Discharge
F-7.5 Combined Resistance/Capacitance Testing
F-7.4 Capacitance Testing
F-7.3 Resistive Testing with Flying Probes
F-7.2.3 Boundary-Scan Coupled with BIST
F-7.2.2 BIST
F-7.2.1 Boundary-Scan
F-7.2 Structured Techniques
F-7.1 Ad Hoc Techniques
F-7.0 APPROACHES TO SMT TESTING

F-6.7 Standards
F-6.6 User Concerns
F-6.5 Vendor Concerns
F-6.4 Confidence Level
F-6.3 Availability
F-6.2 Partitioning
F-6.1 Testability
F-6.0 ASSEMBLY TESTING

F-5.5 Standards
F-5.4 User Concerns
F-5.3 Vendor Concerns
F-5.2 Confidence Level
F-5.1 Availability
F-5.0 PROBLEMS AND ISSUES OF UNPACKED
ICs

F-4.7 Combined Resistance/Capacitance Testing
F-4.6 Capacitance Testing
F-4.5 Resistive Testing with Flying Probes
F-4.4 Boundary-Scan Coupled with BIST
F-4.3 BIST
F-4.2 Boundary-Scan
F-4.1 Structured Techniques
F-4.0 Ad Hoc Techniques
F-3.0 CHIP TESTING

F-2.6 CLASS "4": Sensitivity Range 16,000 Volts
 CONSIDERED NON-ESD SENSITIVE.... 101
Table A–2	Quality of Solder Joints with Copper and Alloy 42 Resulting from Different Reflow Temperatures	38
Table B-1	Estimates of Tensile Properties of Copper Deposit Inside the PTVs	52
Table B–2	Estimates of the Fatigue Life and Time to Failure of PTVs in Some Typical Use Environments from Table A-1	57
Table C–1	SIR Test Parameters for Some Industry Tests	63
Table G–1	Typical Values for Coefficients of Thermal Expansion (ppm/°C)	96
Table G–2	Properties of Printed Circuit Laminates	98
Table K-1	Checklist for Design for Manufacturability and Assembly	109
Table L–1	Galvanic Compatibility of Metals	115
1.0 SCOPE

This document establishes design concepts, guidelines, and procedures intended to promote appropriate ‘Design for Reliability (DfR)’ procedures and to ensure reliable printed wiring assembly (PWA) characteristics. The major focus of the information presented is directed toward those PWAs that have surface mount (SM) components, either totally, or intermixed with through-hole components, mounted on one or both sides of the mounting structure.

1.1 Purpose

The definition of reliability in this document is:

Reliability is the ability of a product to function under given conditions and for a specified period of time without exceeding acceptable failure levels.

This document addresses reliability-related aspects of product design, process design, as well as material/component selection and qualification. This document identifies appropriate existing IPC documents for basic detailed information.

The effort of this document is directed at SMT; the interconnect structure and the solder joint will receive most of our attention.

1.2 Design Philosophy

Before the product design effort can begin, the designers of the product and assembly process need to know the customer’s reliability requirements for the product. These requirements should be defined and ranked by a concurrent engineering or cross-functional team through a process such as Quality Function Deployment (QFD), used to capture the voice of the customer.

1.2.1 Establishing the Design Team

The design team can include but is not limited to the members who participate in at least the design activities identified in Table 1-1. In this table, DfA/M stands for Design for Assembly/Manufacturability, DfT for Design for Testability, DfR for Design for Reliability.

The design team can consider the general design guidelines and issues presented in the body of this document as a methodology for achieving its reliability goals. Figure 1-1 illustrates the general design steps and process flow using concurrent engineering. Figure 1-2 illustrates the interactive nature of the design for reliability process.

1.2.2 Defining Reliability Requirements

The basic reliability requirements to be defined include:

- years of service
- acceptable failure rate(s)/probability(ies) as a function of time
- repair/replacement/upgrade/service/maintenance/warranty strategy
- life cycle environment(s)
- definition of acceptable performance
- criticality of function(s)
- available test equipment

1.2.3 Understanding the Product Life Cycle

The life cycle begins at the component level (including the printed board) and continues through the assembly level; the life cycle includes exposure to the following environments:

- assembly/process
- testing
- storage
- transportation
- operating