Guidelines for Printed Board Component Mounting

Developed by the Component Mounting Guidelines Task Group (5-21a) of the Assembly & Joining Processes Committee (5-20) of IPC

Supersedes:
IPC-CM-770 - September 1968
IPC-CM-770A - March 1976
IPC-CM-770B - October 1980
IPC-CM-770C - March 1987
IPC-CM-770D - January 1996

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
Table of Contents

1 SCOPE

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Purpose</td>
</tr>
<tr>
<td>1.2</td>
<td>Classification of Board Types and Assemblies</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Performance Classes</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Product Types</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Printed Circuit Board Assembly Types</td>
</tr>
<tr>
<td>1.3</td>
<td>Order of Precedence</td>
</tr>
<tr>
<td>1.4</td>
<td>Presentation</td>
</tr>
<tr>
<td>1.5</td>
<td>Terms and Definitions</td>
</tr>
<tr>
<td>1</td>
<td>Purpose</td>
</tr>
</tbody>
</table>

2 APPLICABLE DOCUMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>IPC</td>
</tr>
<tr>
<td>2.2</td>
<td>Joint Industry Standards</td>
</tr>
<tr>
<td>2.3</td>
<td>Electronic Industries Association</td>
</tr>
<tr>
<td>2.4</td>
<td>EOS/ESD Association Documents</td>
</tr>
<tr>
<td>2.5</td>
<td>JEDEC</td>
</tr>
</tbody>
</table>

3 GENERAL GUIDELINES

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Design Options and Considerations</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Leadless Component Terminations</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Leaded Component Terminations</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Spacing</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Part Type</td>
</tr>
<tr>
<td>3.2</td>
<td>Assembly Considerations</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Component Preparation</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Lead Forming</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Component Placement</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Mixed Assemblies</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Component Securing</td>
</tr>
<tr>
<td>3.3</td>
<td>Materials</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Solder</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Flux</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Cleaning Agent</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Adhesive</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Components</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Printed Boards</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Board & Lead Finishes</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Solderability</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Coating</td>
</tr>
<tr>
<td>3.4</td>
<td>Handling and Storage</td>
</tr>
<tr>
<td>3.4.1</td>
<td>EOS/ESD</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Moisture Sensitivity</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Storage</td>
</tr>
<tr>
<td>3.5</td>
<td>Material Movement Systems</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Transporters</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Racks and Carriers</td>
</tr>
</tbody>
</table>

4 COMPONENT GUIDELINES

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Component Characterization and Classes</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Axial-Leaded Components</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Radial-Leaded Components</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Chip Components</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Small Outline Components (SOs)</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Multiple-Ribbon-Lead Components</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Chip Carriers</td>
</tr>
<tr>
<td>4.1.7</td>
<td>Unpackaged Semiconductors</td>
</tr>
<tr>
<td>4.1.8</td>
<td>Tape Automated Bonding (TAB)</td>
</tr>
<tr>
<td>4.1.9</td>
<td>Area Array Components</td>
</tr>
<tr>
<td>4.1.10</td>
<td>Connectors</td>
</tr>
<tr>
<td>4.1.11</td>
<td>Sockets</td>
</tr>
<tr>
<td>4.1.12</td>
<td>Electromechanical and Interconnect Components</td>
</tr>
<tr>
<td>4.2</td>
<td>Component Packaging/Delivery Systems</td>
</tr>
<tr>
<td>4.3</td>
<td>Lead/Termination Finishes</td>
</tr>
</tbody>
</table>

5 PACKAGING AND INTERCONNECTING (PRINTED BOARD) STRUCTURES

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Printed Board Characterization and Classes</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Rigid Laminate Boards</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Flexible Laminate Boards</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Metal-Core Boards</td>
</tr>
<tr>
<td>5.2</td>
<td>Supporting-Plane Printed Board Structures</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Printed Board Bonded to Support Plane (Metal or Nonmetal)</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Sequentially-Processed Structures with Metal Support Plane</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Discrete-Wire Structures with Metal Support Plane</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Flexible Printed Board with Metal Support Plane</td>
</tr>
<tr>
<td>5.3</td>
<td>Constrained Core Printed Board Structures</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Porcelainized-Metal (Metal Core) Structures</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Printed Board with Constrained (Not Electrically Functioning) Core</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Printed Boards with Electrically-Functional Constrained Cores</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Printed Board with Constrained Core</td>
</tr>
<tr>
<td>5.4</td>
<td>Other Mounting Structure Materials and Considerations</td>
</tr>
</tbody>
</table>
15.1.1 Body Size ... 108
15.1.2 Ball Size Relationships 108
15.1.3 Coplanarity ... 108
15.2 Component Packaging Style Considerations 109
15.2.1 Plastic Ball Grid Arrays (PBGA) 109
15.2.2 Ceramic Ball Grid Arrays (CBGA) 110
15.2.3 Ceramic Column Grid Arrays (CCGA) 111
15.2.4 Tape Ball Grid Arrays (TBGA) 111
15.3 BGA Connectors .. 112
15.3.1 Assembly Considerations for BGA Connectors 112
15.3.2 Material Considerations for BGA Connectors 112
15.4 Components Package Drawings 112
15.5 Component Procurement 112
15.5.1 Shipping Media ESD 112
15.5.2 Delivery System 112
15.6 Handling and Storage 112
15.6.1 ESD Protection 112
15.6.2 Moisture .. 112

16 MOUNTING STRUCTURE REQUIREMENTS
HIGH PIN COUNT AREA ARRAY 113
16.1 Characterization and Classes - Interconnecting Structures (Printed Boards) 113
16.2 Standardization .. 113
16.3 Ball Pitch .. 113
16.4 Future Ball Conditions 113
16.5 Land Approximation 113
16.6 Physical Conditions 114

17 ASSEMBLY HIERARCHY HIGH PIN COUNT AREA ARRAY 114
17.1 Process Steps ... 114
17.1.1 Sequence .. 114
17.2 Process Step Analysis 114
17.3 Attachment Issues 114
17.4 Reflow .. 115
17.5 Preclad .. 115

18 COMPONENT CHARACTERISTICS FLIP CHIP DIRECT CHIP ATTACH ... 115
18.1 Types of Flip Chip Joints 115
18.1.1 Solder Bumps 115
18.1.2 Non-solder Type Bumps 115
18.2 Characterization and Classes of Flip Chip Joints 115
18.2.1 Meltable Solder Joints 115
18.2.2 Partially Meltable Bumps 115
18.2.3 Nonmelting Bumps 115
18.2.4 Polymeric/Conductive Adhesive Bumps 115
18.3 Component Design for Circuit Boards 117
18.3.1 Design Considerations (repeated information) .. 117
18.3.2 Chip Size Standardization 117
18.3.3 Bump Site Standards 118
18.3.4 Peripheral Lead Standards 118
18.3.5 Package Size Standards 118
18.3.6 I/O Capability 118
18.3.7 Alpha Particle Emissions (Soft Errors) 118
18.3.8 Substrate Structure Standard Grid Evolution 119
18.3.9 Footprint Design 120
18.3.10 Design Guide Checklist 120
18.3.11 Die Design Shrinks 121
18.3.12 I/O Drivers on the Periphery 121
18.3.13 Isolating Sensitive I/Os 122
18.3.14 Printed Board Land Pattern Design 122
18.3.15 High Frequency Performance 122
18.3.16 Thermal Design 123
18.4 Handling, Shipping and Storage 124
18.4.1 Handling Systems 124
18.4.2 Storage Atmosphere 125
18.4.3 ESD Protection 125
18.4.4 Types of Carrier Packaging for Shipping 125
18.4.5 Storage System and Length of Storage 125
18.5 Mechanical Properties 125
18.5.1 Interconnect Joint Dimensions 126
18.5.2 Solderability of Bumps Not Wetting or Partial Wetting to Substrate is a Reliability Concern 126
18.6 Electrical Issues 126
18.6.1 Wafer Test/Sorting Inked Die 127
18.6.2 Room Temperature Testing of Wafer vs. Testing Wafer over Temperature and Costs 127
18.7 Marking ... 127
18.8 Physical Conditions 127
18.8.1 Workmanship 127

19 MOUNTING STRUCTURE GUIDELINES
FLIP CHIP DIRECT CHIP ATTACH (Refer to General Guidelines Section) 127

20 ASSEMBLY HIERARCHY FLIP CHIP DIRECT CHIP ATTACH 127
20.1 Process Steps ... 127
20.2 Manual Techniques for Semiautomated Pick and Place 127
Figure 1-1 Type 1 Printed Board Assembly 3
Figure 1-2 Type 2 Printed Board Assemblies 4
Figure 1-3 Clinched Wire Through Connection 6
Figure 3-1 Staggered Hole Pattern Mounting
"MO" Flatpack Outline Drawing (Only
Inches Shown) .. 12
Figure 3-2 Component Modifications for Surface
Mounting Applications 13
Figure 3-3 Modifying DIP for Surface Mounting 13
Figure 3-4 Placement Machine Considerations 13
Figure 3-5 Mixed Assemblies 14
Figure 3-6 Clip-Mounted Component 15
Figure 3-7 Strap Securing 16
Figure 3-8 Frequently Encountered EOS/ESD
Warning Labels .. 20
Figure 3-9 Series Connected Wrist Strap 22
Figure 3-10 Parallel Connected Wrist Strap 22
Figure 4-1 Through-the-Board Component Types 24
Figure 4-2 Some Surface Mount Component Types 25
Figure 5-1 Printed Board Bonded to Supporting
Plane ... 29
Figure 5-2 Sequentially Processed Structure with
Supporting Plane ... 30
Figure 5-3 Discrete-Wire Structure with Low-
Expansion Metal Support Plane 30
Figure 5-4 Flexible Printed Board with Metal Support
Plane .. 31
Figure 5-5 Printed Board with Supporting Plane (Not
Electrically-Functional Constraining Core) 32
Figure 5-6 Multilayer Printed Board Structure with
Copper-Clad Invar Power and Ground
Planes (Electrically-Functional Constraining Cores) 32
Figure 5-7 Balanced Structure with Constraining Core
not at Neutral Axis .. 32
Figure 5-8 Balanced Structure with Constraining Core
not at Neutral Axis .. 32
Figure 5-9 Common Component Heat Sinks 33
Figure 5-10 Typical Spacers 33
Figure 5-11 Can Mounting Spreader 33
Figure 5-12 Thermally Conductive Insulator 34
Figure 7-1 Single-Sided Surface Mount Assembly,
Reflow Only (See Table 6-1 SURFACE MOUNT SINGLE-SIDED A REFLOW
ONLY) ... 40
Figure 7-2 Single-Sided Surface Mount Assembly,
Immersion Only (See Table 6-1 SURFACE MOUNT SINGLE-SIDED B IMMERSION
ONLY) .. 40
Figure 7-3 Mixed Technology Assembly, Double-Sided,
Reflow Only (See Table 6-1 SURFACE MOUNT DOUBLE-SIDED REFLOW
ONLY) .. 40
Figure 7-4 Mixed Technology Assembly, Double-Sided,
Reflow and Immersion (See Table 6-1
THROUGH HOLE AND SURFACE MOUNT MIX REFLOW AND IMMERSION) 40
Figure 7-5 Mixed Technology Assembly, Double-Sided
Reflow and Manual .. 41
Figure 7-6 Mixed Technology Assembly, Double-Sided,
Immersion Only ... 41
Figure 7-7 Panel Assembly Tooling Holes 41
Figure 7-8 Panel Assembly Tooling Holes 42
Figure 8-1 Component Orientation for Wave-Solder
Applications .. 45
Figure 8-2 Alignment of Similar Components 45
Figure 8-3 Panel/Global Fiducials 46
Figure 8-4 Local and Global Fiducials 46
Figure 8-5 Fiducial Locations on a Printed Board 46
Figure 8-6 Fiducial Clearance Requirements 47
Figure 8-7 Surface Mounting Geometries 47
Figure 8-8 Land Pattern-to-Via Relationship 48
Figure 8-9 Examples of Via Positioning Concepts 49
Figure 8-10 Conductor Description 50
Figure 8-11 Routed Slots 51
Figure 8-12 Typical Copper Glass Laminate Panel 51
Figure 8-13 Conductor Clearance for V-Groove
Scoring ... 52
Figure 8-14 Breakaway (Routed Pattern) with Routed
Slots .. 52
Figure 9-1 Axial-Leaded Component 53
Figure 9-2 Taped Axial-Leaded Components 53
Figure 9-3 Polarized Axial Lead Component (Typical
Polarity Markings) ... 53
Figure 9-4 Rectangular Radial Lead Capacitors 53
Figure 9-5 Disc Radial Lead Capacitors 54
Figure 9-6 Cast Radial Lead Capacitor 54
Figure 9-7 Radial-Leaded TO-3 Transistor Can 54
Figure 9-8 Multiple-Lead Variable Resistor 54
Figure 9-9 16-Lead Dip 55
Figure 9-10 Single Inline Packages Component 55
Figure 9-11 Flatpack Outline Drawing 56
Figure 9-12 Typical Ribbon Ledged Discrete Device
Outline Drawing (Flat Leads) 56
Figure 9-13 Pin Grid Array 57
Figure 9-14 I/O Density Versus Lead Count (All
Dimensions in Inches) 57
Figure 9-15 Connector with Press Fit Contacts 57
Figure 9-16 Surface Mount Clip Carrier Socket 58
Figure 9-17 Section Through Socket Solder Contact 58
Figure 10-1 Typical TO-100 Can Layout 59
Figure 10-2 Typical Mounting Pattern for 10-Lead
Cans with Clinched Leads 60
Figure 10-3 A Typical Dual-Inline Layout 60
Figure 10-4 Staggered Hole Pattern Mounting
(Flatpack Outline Drawing) 60
Figure 11-1 Component Mounting Sequence 62
Figure 11-2 Thermal Shunt 63
Figure 11-3 Termination Examples 64
Figure 11-4 Clinched Lead 65
Figure 11-5 Clinch Patterns 66
Figure 11-6 Offset Clinched Lead 66
Figure 11-7 Semiclinched Lead 66
Figure 11-8 Bend Configuration 67
Figure 11-9 Lead Diameter Versus Bend Radius 68
Figure 11-10 Stress Relief Examples 68
Figure 11-11 Simple-Offset Preformed Lead 68
Figure 11-12 Dimple Preformed Leads 68
Figure 11-13 Compound Preformed Leads 69
Figure 11-14 Combination Preformed Leads 69
Figure 11-15 Stress Relief Leads 69
Figure 11-16 TO Can Lead Forming 69
Figure 11-17 Dimple Preformed Leads 69
Figure 11-18 Typical Mounting Pattern for 12-Lead Cans with Clinched Leads Mounting 70
Figure 11-19 Mechanically Secured Transistor 70
Figure 11-20 Single-Inline Component 70
Figure 11-21 Lead Configuration (After Assembly) 71
Figure 11-22 Resilient Spacer to Heat Sink Frame 71
Figure 11-23 Staggered Hole Pattern Mounting (Flatpack Outline Drawing) 71
Figure 11-24 Through-Hole Mounting (Flatpack Outline Drawing) 71
Figure 11-25 Through-Hole Mounting with Unclinched Leads ... 72
Figure 11-26 Through-Hole Mounting with Clinched Leads and Circumscribing Land 72
Figure 11-27 Through-Hole Mounting with Offset Land ... 72
Figure 11-28 Components Mounted Over Conductors 73
Figure 11-29 Uncoated Board Clearance 73
Figure 11-30 Component Alignment 74
Figure 11-31 Component Alignment 74
Figure 11-32 Component Misalignment 74
Figure 11-33 Component Misalignment Clearance 74
Figure 11-34 Horizontal Mounting of Radial Leaded Component ... 75
Figure 11-35 Horizontal Mounting of Radial Leaded Component with Heat Sink 75
Figure 11-36 Horizontal TO Mounting 75
Figure 11-37 Vertical Mounted Axial Lead Components 75
Figure 11-38 Vertical Mounted Radial-Lead Components ... 76
Figure 11-39 Vertical Mounted Components Coating Meniscus 76
Figure 11-40 Radial Components Mounting (Unsupported Holes) ... 76
Figure 11-41 Straight-Through Lead, Unclinched Can 76
Figure 11-42 Offset Lead Can Mounting 76
Figure 11-43 Transistor Mounting (with Spacing) 77
Figure 11-44 Metal Power-Package Transistor Mounted on Resilient Standoffs 77
Figure 11-45 Dual-Inline Package Gripping Tools 78
Figure 11-46 Transistor Assembly Tools 79
Figure 11-47 Taping Specifications (only inches shown) .. 79
Figure 11-48 DIP Clearances 80
Figure 11-49 DIP Layout in Rows and Columns 80
Figure 11-50 DIP Slide Magazines 80
Figure 12-1 50-mil Center JEDEC Packages 81
Figure 12-2 Features Common to 0.050 inch Center Packages ... 82
Figure 12-3 Criteria for Lead Attachment to Leadless Type A to Make a Leaded Type B 82
Figure 12-4 Double Row Plastic Chip Carrier 83
Figure 12-5 Common Configurations of Rectangular Resistors ... 84
Figure 12-6 Typical Rectangular Chip Capacitors 84
Figure 12-7 Cylindrical/Rectangular Terminations 85
Figure 12-8 A Chip Inductor 85
Figure 12-9 Typical Surface Mount Inductor 85
Figure 12-10 Surface Mount Cermet Trimmer 85
Figure 12-11 SO-16 Package Drawings Typical Dimension ... 86
Figure 12-12 Typical SOT Packages (Refer to JEDEC Publication 95 for dimension data.) 87
Figure 12-13 Basic Chip Resistor Construction 88
Figure 12-14 Chip Capacitor Construction 88
Figure 12-15 Inductor Construction 89
Figure 12-16 Tantalum Capacitor Construction 89
Figure 12-17a Metal Electrode Face Component 90
Figure 12-17b Break-Away Diagram of MELF Components Construction Figure 90
Figure 12-18 SOT 23 Construction 90
Figure 12-19 SOT 89 Construction 91
Figure 12-20 SOD 123 Construction 91
Figure 12-21 SOT 143 Construction 91
Figure 12-22 SOT 223 Construction 91
Figure 12-23 TO 252 Construction 92
Figure 12-24 SOIC Construction 92
Figure 12-25 SOPIC Construction 92
Figure 12-26 PLCC (Square) 93
Figure 12-27 PLCC (Rectangular) Construction 93
Figure 13-1 Chip Component and Lands 94
Figure 13-2 Chip Component and Lands 97
Figure 13-3 Example of 68 I/O Land Pattern on Printed Board Structure 97
Figure 14-1 No Bridging .. 99
Figure 14-2 Lead Forming for Surface Mounting 99
Figure 14-3 Criteria for Lead Attachment to Leadless Type A (Leaded Type B) 100
January 2004

Tables

Table 1-1 Interconnection Acronyms and Definitions 5
Table 3-1 Typical Static Charge Sources 20
Table 3-2 Typical Static Voltage Generation 20
Table 3-3 Maximum Allowable Resistance and Discharge Times for Static Safe Operations 21
Table 5-1a Packaging and Interconnecting Structure Comparison .. 28
Table 5-1b Packaging and Interconnecting Structure Comparison .. 28
Table 5-1c Packaging and Interconnecting Structure Comparison .. 29
Table 5-1d Packaging and Interconnecting Structure Comparison .. 29
Table 6-1 Through Hole and Surface Mount Assembly Process Flow Comparison 38
Table 8-1 Typical Conductor Width Tolerances 50
Table 8-2 Recommended Feature Location Accuracy 50
Table 11-1 Lead Clinch Length 66
Table 12-1 JEDEC Ceramic Sizes and Fine Pitch Terminal Count ... 83
Table 12-2 General Application Considerations 88
Table 13-1 Tolerance Analysis Elements for Chip Devices 95
Table 13-2 Flat Ribbon L and Gull-wing Leads (Greater than 0.625 mm Pitch) 95
Table 13-3 Round or Flattened (Coined) Leads 96
Table 13-4 J-Leads ... 96
Table 13-5 Rectangular or Square-End Components (Ceramic Capacitors and Resistors) 96
Table 13-6 Rectangular or Square-End Components (Tantalum Capacitors) 96
Table 13-7 Cylindrical End Cap Terminations 96
Table 13-8 Bottom Only Terminations 96
Table 13-9 Leadless Chip Carrier With Castellated Terminations ... 96
Table 13-10 Butt Joints ... 96
Table 13-11 Inward Flat Ribbon L and Gull-Wing Leads 96
<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 13-12</td>
<td>Flat Lug Leads</td>
<td>96</td>
</tr>
<tr>
<td>Table 16-1</td>
<td>Ball Diameter Sizes</td>
<td>113</td>
</tr>
<tr>
<td>Table 16-2</td>
<td>Future Ball Size Diameters</td>
<td>113</td>
</tr>
<tr>
<td>Table 16-3</td>
<td>Land Size Approximation</td>
<td>113</td>
</tr>
<tr>
<td>Table 16-4</td>
<td>Future Land Size Approximations</td>
<td>114</td>
</tr>
<tr>
<td>Table 18-1</td>
<td>Alpha Particle Emissions of Semiconductor Materials</td>
<td>119</td>
</tr>
<tr>
<td>Table 18-2</td>
<td>Design Rules for Substrates for Chip Scale Technology</td>
<td>119</td>
</tr>
<tr>
<td>Table 18-3</td>
<td>Typical Thermal Resistance for Variable Bump Options (Triple Layer Chip)</td>
<td>124</td>
</tr>
<tr>
<td>Table 18-5</td>
<td>C4 Bump Diameter and Minimum Pitch Options</td>
<td>126</td>
</tr>
<tr>
<td>Table 23-1</td>
<td>Inspection Magnification</td>
<td>135</td>
</tr>
<tr>
<td>Table 26-1</td>
<td>Coating Thickness</td>
<td>139</td>
</tr>
</tbody>
</table>
1 SCOPE

This document provides information for preparation of components for assembly to printed boards, contains a review of some pertinent design criteria, impacts and issues, techniques of general interest for assembly (both manual and machines) and discusses considerations of, and impacts upon, subsequent soldering, cleaning, and coating processes. The information herein consists of compiled data representing commercial and industrial applications.

This section discusses general recommended assembly guidelines. Later sections discuss information concerning specific packaging types.

Sections 2 through 5 provide guidelines for the specific component within each sectional document. The parts are described in detail and each section outlines specifics affecting the part class. The descriptions and classifications provided are those generally used in the industry with reference to military and commercial applications.

Due to the rapid progress and evolution in packaging and assembly technology today, this document may not cover all currently available components or assembly techniques such as lead free.

1.1 Purpose The purpose of this document is to illustrate and guide the user seeking answers to questions related to accepted, effective methods of mounting components to printed wiring boards.

1.2 Classification of Board Types and Assemblies

1.2.1 Performance Classes Three general end-product classes have been established to reflect progressive increases in sophistication, functional performance requirements and testing/inspection frequency. It should be recognized that there could be an overlap of equipment between classes. These performance classes are the same for both bare boards and assemblies. The printed board user has the responsibility to determine the class to which his product belongs. The contract shall specify the performance class required and indicate any exceptions to specific parameters, where appropriate.

Class 1 – General Electronic Products

Includes consumer products, some computers and computer peripherals suitable for applications where cosmetic imperfections are not important and the major requirement is the function of the completed electronic assembly.

Class 2 – Dedicated Service Electronic Products

Includes communications equipment, sophisticated business machines, and instruments where high performance and extended life is required and for which uninterrupted service is desired but not critical. Certain cosmetic imperfections are allowed.

Class 3 – High Performance Electronic Products

Includes the equipment and products where continued performance or performance-on-demand is critical, such as in life support items or flight control systems. Equipment downtime cannot be tolerated and must function when required. Assemblies in this class are suitable for applications where high levels of assurance are required, service is essential, or the end-use environment may be uncommonly harsh.

1.2.2 Producibility Levels IPC standards usually provide three design complexity levels of features, tolerances, measurements, assembly, testing of completion or verification of the manufacturing process that reflect progressive increases in sophistication of tooling, materials or processing and, therefore, progressive increases in fabrication cost. These levels are:

• Level A – General Design Complexity - Preferred
• Level B – Moderate Design Complexity - Standard
• Level C – High Design Complexity - Reduced Producibility

The producibility levels are not to be interpreted as a design requirement, but a method of communicating the degree of difficulty of a feature between design and fabrication/assembly facilities. The use of one level for a specific feature does not mean that other features must be of the same level. Selection should always be based on the minimum need, while recognizing that the precision, performance, conductive pattern density, assembly and testing requirements determine the design producibility level. The numbers listed within the numerous tables are to be used as a guide in determining what the level of producibility is for any feature. The specific requirement for any feature that must be controlled on the end item should be specified on the master drawing of the printed board or the printed board assembly drawing.

These levels for assemblies are:

• Level A – Through-hole component mounting only.
• Level B – Surface mounted components only.
• Level C – Simplistic through-hole and surface mounting intermixed assembly.