Guidelines for Cleaning of Printed Boards and Assemblies

Developed by the Cleaning and Alternatives Subcommittee (5-31) of the Cleaning and Coating Committee (5-30) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 Overview ... 1
1.1 Scope .. 1
1.2 Purpose ... 1
1.3 Background .. 1
1.4 Current and Emerging Cleaning-Related Challenges 1
1.5 Document Chapters ... 1
1.5.1 Section 2: Applicable Documents 1
1.5.2 Section 3: Assembly Cleaning Value and Applicability ... 2
1.5.3 Section 4: Designing Assemblies for Cleaning 2
1.5.4 Section 5: Materials Compatibility 2
1.5.5 Section 6: Process Development and Verification 2
1.5.6 Section 7: Contamination and Its Effects on PWBs 2
1.5.7 Section 8: Assembly Residues/Cleaning Considerations 3
1.5.8 Section 9: Environmental Considerations 3
1.5.9 Section 10: Solvent Cleaning Agents 3
1.5.10 Section 11: Semi-Aqueous Cleaning Agents, Equipment, and Process Optimization 3
1.5.11 Section 12: Aqueous Cleaning Agents, Equipment, and Process Integration 3
1.5.12 Section 13: Cleaning for Rework, Repair, and Restoration Operations 3

2 Applicable Documents ... 4
2.1 Industry Standards .. 4
2.1.1 IPC Standards .. 4
2.1.2 Joint Industry Standards ... 5
2.1.3 Telcordia Technologies .. 5
2.2 U.S. Federal Regulations ... 5
2.2.1 Federal Laws .. 5
2.2.2 Federal Standards ... 5
2.2.3 Department of Defense ... 5
2.2.4 Occupational Safety and Health Administration (OSHA) 6
2.2.5 Environmental Protection Agency (EPA) 6
2.2.6 Department of Transportation 6
2.2.7 American Conference of Governmental Industrial Hygienists (ACGIH) 6
2.2.8 National Institute of Occupational Safety and Health (NIOSH) 6

2.3 Other ... 6
2.3.1 American Standards for Testing Materials 6
2.3.2 Standard Specification of Materials 7
2.3.3 National Fire Protection Association (NFPA) 7
2.3.4 American National Standards Institute (ANSI), American Society for Quality Control (ASQC) 7

2.4 Other Considerations .. 7
2.4.1 ISO Standards ... 7
2.4.2 REACH ... 7
2.4.3 Cal/OSHA .. 7
2.4.4 FDA/EU cGMP ... 7
2.5 Terms and Definitions ... 7
2.5.1 Solvent Cleaning .. 8
2.5.2 Defluxing ... 8
2.5.3 Solvent Cleaning Steps .. 8
2.5.4 Wash or Washing ... 8
2.5.5 Rinse or Rinsing .. 8
2.5.6 Drying ... 8
2.5.7 Solvent Cleaning Agent Recovery and Recycle 8
2.5.8 Solvent Agitation Methods 8
2.5.9 Solvent Cleaning Agent Acronym Definitions 8
2.5.10 Solvent Cleaning Process Definitions 9
2.5.11 Carbon Adsorption .. 9
2.5.12 Combustible .. 9
2.5.13 Co-solvent (Bi-solvent) .. 9
2.5.14 Dragout ... 9
2.5.15 Semi-Aqueous Cleaning 9
2.5.16 Semi-Aqueous Cleaning Steps Definitions 9
2.5.17 Hydrocarbon-Surfactant (HCS, HC/S, HC-S) Cleaning ... 9
2.5.18 Emulsion or Emulsification 9
2.5.19 Rinse or Rinsing .. 9
2.5.20 Dry or Drying ... 9
2.5.21 Semi-Aqueous Cleaning Agent Acronym Definitions ... 10
2.5.22 Semi-Aqueous Cleaning Process Definitions 10
2.5.23 Carbon Adsorption .. 10
2.5.24 Combustible .. 10
2.5.25 Decanting ... 10

Table of Contents
5.5.11	Conformal Coating Adhesion	42
6.7.8	Periodic Product Qualification	58
6.7.8	Conformal Coating Adhesion	42
6.7.9	Quality Information	58
6.7.10	Field Performance Data	58
6.7.11	Process Monitoring	58
6.7.12	Data Collection and Reporting	58
7.2	Terms and Definitions (Items noted with an * are quoted from IPC-T-50)	60
7.2.1	*Anode	60
7.2.2	Anion	60
7.2.3	*Bridging	60
7.2.4	Cathode	60
7.2.5	Cation	60
7.2.6	*Conductivity	60
7.2.7	*Conductor Spacing	60
7.2.8	Corrosion	60
7.2.9	*Corrosive Flux	60
7.2.10	Creep Corrosion	60
7.2.11	*Dendritic Growth	61
7.2.12	Dendritic Migration	61
7.2.13	Dipole	61
7.2.14	Dipole Moment	61
7.2.15	Dissolution of Metallization	61
7.2.16	Electrochemical Migration	61
7.2.17	Electromigration (EM)	61
7.2.18	Flux	61
7.2.19	*Flux Activity	61
7.2.20	Flux Residue	61
7.2.21	Galvanic Corrosion	61
7.2.22	Halide Content	61
7.2.23	*Inorganic Flux	61
7.2.24	Ionic Cleanliness	61
7.2.25	Ionic Contamination	61
7.2.26	*Leakage Current	62
7.2.27	*Metal Migration	62
7.2.28	*Non-activated Flux	62
7.2.29	*Nonionic Contaminant	62
7.2.30	Organic Contamination	62
7.2.31	Organic Flux	62
7.2.32	*Packaging Density	62
12 AQUEOUS CLEANING AGENTS, EQUIPMENT, AND PROCESS INTEGRATION ... 160
12.1 Scope .. 160
12.2 Purpose .. 160
12.3 Terms and Definitions ... 161
12.3.1 Aqueous Cleaning .. 161
12.3.2 Wash or Washing .. 161
12.3.3 Rinse or Rinsing ... 161
12.3.4 Drying ... 161
12.3.5 Gross Drying .. 161
12.3.6 Defluxing (Flux Removal or Post Solder Cleaning) ... 161
12.3.7 Fine Cleaning .. 161
12.3.8 Screen and Stencil Cleaning .. 161
12.3.9 Semi-Aqueous Cleaning ... 161
12.3.10 Organic Solvent Cleaning .. 161
12.3.11 Functional Additives ... 161
12.3.12 Reactive Additives or Reactants ... 161
12.3.13 Organic Solvent Emulsions in Aqueous Media ... 161
12.3.14 Manual Cleaning .. 161
12.3.15 Batch Cleaning .. 161
12.3.16 In-Line Cleaning .. 161
12.3.17 Saponification ... 162
12.3.18 pH .. 162
12.4 Aqueous Cleaning Background ... 162
12.4.1 History .. 162
12.4.2 Overview of Aqueous Processing .. 162
12.4.3 Process Map of Aqueous Processes ... 163
12.5 Aqueous Cleaning Agent Technology .. 163
12.5.1 Solvency .. 164
12.5.2 Activators (Reactants) .. 164
12.5.3 Functional Additives .. 164
12.5.4 Surface Tension ... 164
12.5.5 Viscosity .. 164
12.5.6 Corrosion Inhibition .. 165
12.5.7 Defoaming .. 165
12.6 Aqueous Cleaning Product Designs ... 166
12.6.1 Matching the Cleaning Agent to the Soil ... 166
12.6.2 Pure De-Ionized Water (DI-Water) ... 166
12.6.3 Aqueous Neutral .. 166
12.6.4 Saponified Cleaning Agents .. 167
12.6.5 Organic Solvent Emulsions in Water .. 168
12.6.6 Saponified Cleaning Agents .. 167
12.6.7 Aqueous Cleaning Agent Designs to Support Specific Processes 168
12.6.8 Bench-top Cleaning .. 168
12.6.9 Stencil Cleaning .. 168
12.6.10 Aqueous-Base for Removing Uncured Solder Paste and Double-Sided Misprints 169
12.6.11 Batch Cleaning ... 169
12.6.12 Immersion Ultrasonic .. 169
12.6.13 Immersion Centrifugal ... 169
12.6.14 Spray-in-Air (Single or Multiple Chambers) ... 169
12.6.15 Maintenance Cleaning ... 169
12.6.16 Wave Solder Finger Cleaning .. 169
12.6.17 Batch Cleaning Machines .. 170
12.6.18 Batch Immersion .. 170
12.6.19 Ultrasonic .. 170
12.6.20 Spray-under-Immersion .. 171
12.6.21 Centrifugal .. 171
12.6.22 Batch Spray-in-Air .. 172
12.6.23 Single and Multiple Autonomous Chambers .. 172
12.6.24 Progressive Chambers ... 173
12.6.25 Inline Spray-in-Air .. 174
12.6.26 Process Integration .. 176
12.6.27 Designing the Process to Meet the Cleaning Need ... 176
12.6.28 Cleaning Equipment Selection .. 177
12.6.29 Process Variable .. 178
12.6.30 Ventilation ... 186
12.6.31 Balancing the Ventilation for Inline Systems ... 186
12.6.32 Batch Systems .. 187
12.6.33 Drying .. 187
13 CLEANING FOR REWORK, REPAIR, AND RESTORATION OPERATIONS .. 187
13.1 Introduction ... 187
13.2 Terms and Definitions .. 187
13.2.1 Rework .. 188
13.2.2 Repair .. 188
13.3 Rework in the Factory ... 188
13.4 Rework and Repair in the Field ... 188
13.5 Reconditioning and Restoration ... 189
Figure 8-6 Organic-Water Phase .. 95
Figure 8-7 Typical Stages of an In-line PCB Cleaning Process .. 96
Figure 8-8 Foam Beginning to Overflow Two Different Wash Stages .. 96
Figure 8-9 Adjust the Air Knives Away from Rinse 97
Figure 8-10 Rinse stage foam before Exhaust Adjustment .. 98
Figure 8-11 Rinse Stage Foam after Exhaust Adjustment .. 98
Figure 8-12 External Exhaust Damper .. 98
Figure 8-13 Internal Exhaust damper .. 98
Figure 8-14 Foam in the wash .. 99
Figure 8-15 Foam in the wash/rinse chamber impeding drainage between sequential rinses 99
Figure 8-16 Electronic Assembly Process 100
Figure 8-17 Conformal Coating Upstream/Downstream Process Considerations 101
Figure 8-18 Conformal Coating Cause and Effect Factors .. 101
Figure 11-1 Generalized Overall Semi-Aqueous Cleaning Process .. 148
Figure 11-2 Semi-Aqueous Cleaning Machine Schematic .. 150
Figure 11-3 Centrifugal Batch Cleaner Configuration 150
Figure 11-4 Two-Stage Rinse Process 152
Figure 11-5 Continuous Rinse Process 153
Figure 11-6 Specific Gravity vs Rosin Flux Loading 155
Figure 12-1 Post Solder Assembly Cleaning Processes 163
Figure 12-2 Factors that Influence the Effectiveness of the Electronic Assembly Cleaning Process ... 176

Tables
Table 4-1 Bare Printed Board Ionic Contamination Maximum Limits (µg/cm²) 24
Table 4-2 Electronic Assembly Cleaning Agent Design Options .. 27
Table 4-3 Static versus Dynamic Design Options (data findings are supported by several research studies) .. 29
Table 6-1 Material Qualification Specifications and Methods .. 43
Table 6-2 Performance Specifications .. 43
Table 6-3 Reference Documents .. 52
Table 6-4 Contamination Levels Per IPC-TM-650, 2.3.28 .. 56
Table 6-5 Minimum SIR Values .. 56
Table 6-6 Elements of a Quality Assurance Program 57
Table 6-7 Documentation Hierarchy .. 57
Table 7-1 Flux Classification System .. 64
Guidelines for Cleaning of Printed Boards and Assemblies

1 OVERVIEW

1.1 Scope This manual will only include assembly process printed wiring assembly cleaning. The corresponding information on printed wiring board cleaning will be contained in a separate companion document.

1.2 Purpose The purpose of this document is to collect and update all the pertinent information on printed wiring assembly (PWA) cleaning in a single, easy to revise/updated document.

1.3 Background Information on cleaning printed circuit boards (PCBs), printed wiring boards (PWBs), and printed wiring assemblies (PWAs) during manufacture could be found within a number of IPC documents and handbooks, specifically:

CH-65 Guidelines for Cleaning of Printed Boards and Assemblies
SM-839 Pre and Post Solder Mask Application Cleaning Guidelines
SC-60 Post Solder Solvent Cleaning Handbook
SA-61 Post Solder Semi-Aqueous Cleaning Handbook
AC-62 Aqueous Post Solder Cleaning Handbook

While collecting relevant information in various places was recorded for its members to use, one was never sure that one had all the needed information at hand.

1.4 Current and Emerging Cleaning-Related Challenges With the advent of low residue (i.e., no-clean) flux/paste in the early 1990s, many concluded that cleaning was no longer needed. This conclusion neglected the continued drives toward tighter spacing, higher reliability requirements, higher density packaging, underfill adhesion and reduced costs. Since post assembly cleaning normally removed all upstream soils as well, the industry had to convert to clean printed wiring board and clean component manufacturing processes, clean packaging and ultraclean workplaces. Often this became more cumbersome and complicated than post assembly cleaning had been.

Recently, the conversion of soldering processes to lead-free platings/finishes and soldering alloys, often with much higher soldering process temperatures, have further complicated the demands made on solder flux/paste compositions, to accomplish a no clean joining operation, while burning away completely without voids, solder balls or other reliability issues.

The advent of halogen-free laminates, as well as other possible restrictions on the industry’s processing chemicals, will generate new processing challenges to be met.

The ability to effectively clean stencils has become significantly more important. Greater demands on stencil printing have emerged with the advent of fine and ultrafine parts, as well as ball grid arrays. Clean stencils are a must in delivering the proper amount of paste. A partially or fully obstructed aperture on a stencil is more likely to occur with today’s finer pitch devices. It has been estimated that approximately 70% of SMT solder defects are due to solder paste printing problems. Stencil cleaning processes are covered in a separate document.

Environmental and worker safety issues are very much a part of today’s cleaning picture. Assemblers must consider factors such as VOCs, BODs, CODs (Volatile Organic Compounds, Biological Oxygen Demand and Chemical Oxygen Demand, respectively), waste water treatment, heavy metals, close-looping and pH. Because of demanding official regulations (federal and/or local), it can be one or more of these factors that determine the choice of a cleaning process and associated equipment.

1.5 Document Chapters

1.5.1 Section 2: Applicable Documents This section contains references to industry standards, federal regulations, test methods and vehicles that are applicable to post solder cleaning of electronic assemblies. Not all of these are cross-referenced in the text. They are listed below for the convenience of the readers.