Printed Wiring Board
Strain Gage Test Guideline

Developed by the JEDEC Reliability Test Methods for Packaged Devices Committee (JC-14.1) and the SMT Attachment Reliability Test Methods Task Group (6-10d) of the Product Reliability Committee (6-10) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1219
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 SCOPE ... 1
 1.1 Purpose ... 1
 1.2 Background .. 1
 1.3 Terms and Definitions .. 2
 1.4 Future Studies ... 2

2 APPLICABLE DOCUMENTS 2
 2.1 IPC ... 2
 2.2 ASTM .. 2
 2.3 Other Publications ... 2

3 GENERAL REQUIREMENTS/GUIDELINES 2
 3.1 Boards... 4
 3.2 Components and Devices....................................... 5
 3.3 Strain Gage ... 5
 3.4 Gage Attachment .. 7
 3.5 Lead Wires.. 9
 3.6 Measurement Equipment...................................... 10
 3.7 Measurement Calibration 10
 3.8 Manual Simulation ... 10
 3.9 Shipping Package Test ... 11

4 DATA ANALYSIS AND REPORTING 12
 4.1 Analysis Requirements ... 12
 4.2 Test Frequency ... 12
 4.3 Strain Gage Test Report Template 12

APPENDIX A STRAIN LIMITS 14

APPENDIX B REFERENCE FOR RATE LIMITED GUIDANCE 16

APPENDIX C ICT DESIGN CONSIDERATIONS 18

APPENDIX D GLOSSARY .. 19

Figures
 Figure 1-1 Lifted Pad.. 1
 Figure 3-1 Board Assembly Strain Measurement 3
 Figure 3-2 System Assembly Strain Measurement 3
 Figure 3-3 Board with SMT Components Only
 (After SMT Reflow) Example 1............................... 4
 Figure 3-4 Board with SMT Components Only
 (After SMT Reflow) Example 2............................... 4
 Figure 3-5 Board with Both SMT and Through-Hole
 Components (After Wave Solder) 4
 Figure 3-6 ICT Fixture Strain Gage Test Setup 5
 Figure 3-7 Stacked Rosette Strain Gage 5
 Figure 3-8 Strain Gage Dimensions (Inches) 6
 Figure 3-9 Recommended Gage Placement 7
 Figure 3-10 Interference Due to BGA Pushdown Block 8
 Figure 3-11 Interference Due to ICT Probe 8
 Figure 3-12 Centroid of Gage Placement Above
 Corner Land Pad .. 9
 Figure 3-13 Component Removal to Facilitate Gage
 Placement .. 9
 Figure 3-14 Lead Wire Routing Example 1 10
 Figure 3-15 Lead Wire Routing Example 2 10
 Figure 3-16 Gage Correlation Tool 11
 Figure 3-17 Simulated Edge Guides 11
 Figure 3-18 Shipping Package Drop Test 12
 Figure 3-19 Placement of Instrumented Boards for
 Shipping Package Test 12
 Figure 4-1 Time History of the Strain Limit Criteria 12
 Figure A-1 Typical Example of Allowable Strain as a Function of Strain Rate and Board Thickness 15
 Figure B-1 Data Reporting Example for 2.35 mm
 Thick PWB ... 17
Printed Wiring Board
Strain Gage Test Guideline

1 SCOPE
This document describes specific guidelines for strain gage testing for Printed Wiring Board (PWB) assemblies in the board manufacturing process including, assembly, test, system integration and board shipping.

The suggested procedure enables board assemblers to conduct required strain gage testing independently, and provides a quantitative method for measuring board flexure, and assessing risk levels.

The topics covered include:
• Test setup and equipment requirements
• Strain measurement
• Report format

This document assumes a surface mount device; Ball Grid Array (BGA), Small Outline Package (SOP) and Chip Scale (Size) Package (CSP) are typical device examples. Discrete Surface Mount Technology (SMT) devices, (e.g., capacitors, resistors, etc.) are outside the scope of this publication.

1.1 Purpose
Strain gage testing allows objective analysis of the strain and strain rate levels that a SMT package is subjected to during PWB assembly, test and operation.

Characterization of worst-case PWB strain is critical due to the susceptibility of component solder joints to strain-induced failures. Excessive strain can result in solder joint damage for all package substrate plating finishes. Such failures include solder ball cracking, trace damage, pad lifting (shown in Figure 1-1) and substrate cracking during board manufacturing and test processes.

1.2 Background
Board flexure control using strain gage measurement has proven very beneficial to the electronics industry, and continues to gain acceptance as a method to identify damaging manufacturing processes. However, as interconnect densities have increased and become more fragile, the potential for flexure-induced damage has increased. Many board assemblers are now required to operate under strain levels specified by their customers or component suppliers.

As strain measurement technology has matured, different methodologies have developed. Variations in strain gage methodology inhibit reliable data collection and prevent data comparison across the industry. This document addresses variations in gage mounting, gage placement, experiment design, data acquisition system variables, and strain metrics.

Figure 1-1 Lifted Pad
PWB strain measurement includes application of strain gages to the board at specified components, and then subjecting the instrumented board to various test and assembly operations. Test and assembly steps which exceed strain limits are deemed excessive and are identified so that corrective actions can be made. Strain limits may come from the customer, component supplier or internal best known practices. Examples of strain measurement criteria are shown in Appendix A.

By identifying areas sensitive to manufacturing variation, strain gage testing provides insight into the effects of a production ramp. Strain gage measurements become the baseline for future process improvement activities, and quantify the effectiveness of adjustments. Manufacturing steps that are typically characterized are listed below:

1. SMT assembly process:
 • Board depanelization (routing) processes
 • All manual handling processes
 • All rework and retouch processes
 • Connector installation
 • Component installation

2. Board test processes:
 • In-Circuit Test (ICT)
 • Board Functional Test (BFT), or equivalent functional test

3. Mechanical assembly:
 • Heat sink assembly
 • Board support/stiffener assembly