Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments

Developed by the SMT Attachment Reliability Test Methods Task Group (6-10d) of the Product and Reliability Committee (6-10) of IPC

Supersedes:
IPC-9701 - January 2002

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1219
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 SCOPE ... 1
 1.1 Purpose ... 1
 1.2 Performance Classification 1
 1.3 Definition of Terms .. 1

2 APPLICABLE DOCUMENTS ... 1
 2.1 IPC ... 1
 2.2 Joint Industry Standards 2
 2.3 International Tin Research Institute 2
 2.4 Other Publications .. 2
 2.4.1 Electronic Industries Association 2
 2.4.2 OEM Working Group 2

3 TERMS, DEFINITIONS AND CONCEPTS 2
 3.1 General .. 2
 3.2 Reliability Concepts ... 2
 3.2.1 Reliability Definition 3
 3.3 Physics-of-Failure Concepts 3
 3.3.1 Creep .. 3
 3.3.2 Stress Relaxation ... 3
 3.3.3 Solder Creep-Fatigue Model 3
 3.3.4 Differential Thermal Expansion 3
 3.4 Test Parameters ... 3
 3.4.1 Working Zone ... 3
 3.4.2 Cyclic Temperature Range/Swing 3
 3.4.3 Sample Temperature: Ts 3
 3.4.4 Maximum Sample Temperature: Ts (max) 5
 3.4.5 Minimum Sample Temperature: Ts (min) 5
 3.4.6 Maximum Nominal Temperature: T (max) 5
 3.4.7 Minimum Nominal Temperature: T (min) 5
 3.4.8 Mean Cyclic Temperature, Ts 5
 3.4.9 Nominal ΔT .. 5
 3.4.10 Dwell/Soak Time, tD 5
 3.4.11 Dwell/Soak Temperature 5
 3.4.12 Cycle Time .. 5
 3.4.13 Temperature Ramp Rate 5
 3.4.14 Maximum Cyclic Strain Range 5
 3.4.15 Maximum Cyclic Stress Range 5
 3.4.16 Hysteresis Loop .. 5
 3.4.17 Design Service Life 5
 3.4.18 Infant Mortality Failures 5
 3.4.19 Random Steady-State Failures 5
 3.4.20 Wearout Failures ... 5

3.4.21 Statistical Failure Distribution Concepts 5
 3.5 Statistical Failure Distribution 6
 3.5.1 Statistical Failure Distribution 6
 3.5.2 Mean Fatigue Life, N(50%) 6
 3.5.3 Failure Free Life, N0 6
 3.5.4 Cumulative Failure Percentage 6
 3.5.5 Cumulative Failure Probability 6
 3.5.6 Acceptable Cumulative Failure Probability 6
 3.6 Reliability Tests ... 6
 3.6.1 Accelerated Reliability Test 6
 3.6.2 Thermal Cycling ... 6
 3.6.3 Thermal Shock ... 6
 3.6.4 Power Cycling ... 6
 3.6.5 Burn-In Test .. 6
 3.6.6 Environmental Stress Screening (ESS) 6
 3.6.7 Highly Accelerated Stress Testing (HAST) 6
 3.6.8 Mechanical Shock ... 6
 3.6.9 Vibration .. 7
 3.6.10 Process Qualification 7
 3.6.11 Process Verification 7
 3.6.12 Evaluation and Application Considerations 7
 3.6.13 Understanding of Solder Attachment Technology ... 7

4 PERFORMANCE TEST METHODS 7
 4.1 General Requirements 7
 4.2 Test Vehicles ... 7
 4.2.1 Component Description 7
 4.2.2 Printed Wiring (Circuit) Boards 10
 4.2.3 Board Assembly ... 11
 4.3 Accelerated Temperature Test Methods 12
 4.3.1 Preconditioning by Isothermal Aging 12
 4.3.2 Temperature Cycling 12
 4.3.3 Test Monitoring ... 12

5 QUALIFICATION REQUIREMENTS 13
 5.1 Thermal Cycling Ranges 13
 5.2 Thermal Cycling Test Durations 14
 5.3 Number of Samples .. 14
 5.4 Test Exemption Requirements 14

6 FAILURE ANALYSIS ... 14
 6.1 Failure Analysis Procedures 14
 6.2 Failure Analysis Documentation 14

February 2006 IPC-9701A
7 QUALITY ASSURANCE ... 14
 7.1 Responsibility for Inspection 14
 7.2 Quality Conformance Inspection 14
 7.2.1 As Assembled Inspection 14
 7.2.2 Thermal Cycling Inspection 15
 7.2.3 Failure Analysis Inspection 15

APPENDIX A .. 16

APPENDIX B .. 18

Figures
Figure 3-1 Representative Temperature Profile for
Thermal Cycle Test Conditions 3

Tables
Table 3-1 Product Categories and Worst-Case
Use Environments for Surface Mounted Electronics 4
Table 4-1 Temperature Cycling Requirements 8
Table 4-2 Daisy Chain Requirements 8
Table 4-3 Test Exemption Requirements 9
Table 4-4 Test Monitoring Requirements 13
Table A-1 Values for Exponent “m” for the Four
Test Condition Levels and for Four Representative Product Use Conditions 17
Table A-2 Mean Fatigue Lives for a Given Component
Assembly for the Four Test Condition Levels and for Four Representative Product Use Conditions 17
Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments

1 SCOPE
This specification establishes specific test methods to evaluate the performance and reliability of surface mount solder attachments of electronic assemblies. It further establishes different levels of performance and reliability of the solder attachments of surface mount devices to rigid, flexible and rigid-flex circuit structures. In addition, it provides an approximate means of relating the results from these performance tests to the reliability of solder attachments for the use environments and conditions of electronic assemblies.

1.1 Purpose The purpose of this document is:
• To provide confidence that the design and the manufacturing/assembly processes create a product that is capable of meeting its intended goals.
• To permit the analytical prediction of reliability based on a generic database and technical understanding.
• To provide standardized test methods and reporting procedures.

1.2 Performance Classification This specification recognizes that surface mount assemblies (SMAs) will be subject to variations in performance requirements based on end use. While Performance Classes are defined in IPC-6011, Generic Performance Specification for Printed Boards, these performance classifications are not specific as to the required reliability. At this point in time, the reliability requirements need to be established by agreement between customer and supplier.

1.3 Definition of Terms The definition of all terms used herein shall be as specified in IPC-T-50, except as otherwise specified in Section 3.

1.4 Interpretation “Shall,” the imperative form of the verb, is used throughout this specification whenever a requirement is intended to express a provision that is mandatory. Deviation from a “shall” requirement may be considered if sufficient data is supplied to justify the exception.

The words “should” and “may” are used whenever it is necessary to express non-mandatory provisions. “Will” is used to express a declaration of purpose.”

To assist the reader, the word “shall” is presented in bold characters.

1.5 Revision Level Changes Changes made to this revision of the IPC-9701 include Appendix B which establishes guidelines for thermal cycle requirements for Pb-free solder joints. Appendix B provides additional recommendations to existing IPC-9701 section requirements when utilizing a Pb-free soldering process.

2 APPLICABLE DOCUMENTS
The following documents are applicable and constitute a part of this specification to the extent specified herein. Subsequent issues of, or amendments to, these documents will become a part of this specification. Documents are grouped under categories as IPC, Joint Industry Standard, ITRI, EIA and others depending on the source.

2.1 IPC
IPCT-50 Terms and Definitions for Interconnecting and Packaging Electronic Circuits
IPC-D-279 Design Guidelines for Reliable Surface Mount Technology Printed Board Assemblies

2.4.1 Adhesion, Plating
2.4.8 Peel Strength, Metal Foil
2.4.22 Bow and Twist
2.6.8 Thermal Stress, Plated-Through Holes

2.5.7 Dielectric Withstanding Voltage, Printed Wiring Material
2.6.6 Thermal Shock-Rigid Printed Boards

2.6.9 Vibration, Rigid Printed Wiring

2.1.1 Microsectioning
2.4.4 Coefficient of Thermal Expansion, Strain Gage Method
2.4.21.1 Bond Strength, Surface Mount Land (Perpendicular Pull Method)
2.4.22 Bow and Twist
2.4.36 Rework Simulation, Plated-Through Holes

IPC-SM-785 Guidelines for Accelerated Reliability Testing of Surface Mount Solder Attachments
IPC-S-816 SMT Process Guideline and Checklist

1. www.ipc.org
2. Current and revised IPC Test Methods are available on the IPC website (www.ipc.org/html/testmethods.htm).