User Guide for the
IPC-TM-650, Method
2.6.25, Conductive
Anodic Filament (CAF)
Resistance and Other
Internal Electrochemical
Migration Testing

Developed by the Electrochemical Migration Task Group (5-32e) of the
Cleaning and Coating Committee (5-30) of IPC

Supersedes:
IPC-9691A - August 2007

Users of this publication are encouraged to participate in the
development of future revisions.

Contact:

IPC
Table of Contents

1 SCOPE ... 1
2 BACKGROUND .. 1
3 PURPOSE .. 1
4 INTRODUCTION .. 1
5 WHAT IS CONDUCTIVE ANODIC FILAMENT GROWTH? 3
6 OTHER INTERNAL ECM MODES 4
7 INCREASING INTERNAL ECM RISK TRENDS 5
8 ADJUSTED CALCE CAF FAILURE MODEL 6
9 INTERNAL ECM TEST VEHICLE DESIGN 7
9.1 Printed Board Thickness and Stackup 7
9.2 Via Patterns and Drill Parameters 8
9.3 Solder Mask .. 8
9.4 Surface Finish .. 12
10 INTERNAL ECM TEST BOARD SAMPLE PREPARATION & TESTING 13
11 INTERNAL ECM TEST DATA FORMAT 14
12 INTERNAL ECM TEST SPACING DATA ANALYSIS .. 15
13 SAMPLE SIZES ... 16
14 RELATING CAF RESISTANCE TEST RESULTS TO EXPECTED FIELD LIFE 18
15 SPECIFYING INTERNAL ECM RESISTANCE 18
16 LOCATION OF TESTING 19
17 LOCATING INTERNAL ECM FAILURES 20
18 FACTORS AFFECTING INTERNAL ECM RESISTANCE .. 22
19 CONCLUSIONS .. 26
20 SUMMARY ... 27

APPENDIX A Other Internal ECM or CAF Resistance Test Boards/ Coupons 28

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4-1</td>
<td>Example of an Internal Conductive Filament</td>
</tr>
<tr>
<td>Figure 4-2</td>
<td>Two Perspectives of the Same Conductive Path</td>
</tr>
<tr>
<td>Figure 4-3</td>
<td>Two Photos Showing Failure Between Plated Through Holes</td>
</tr>
<tr>
<td>Figure 4-4</td>
<td>Failure Analysis Photo Showing Suspected CAF Failure Between Very Closely-Spaced Plated Through Holes</td>
</tr>
<tr>
<td>Figure 6-1</td>
<td>Cross-section SEM micrograph of a laminate material. The hollow glass fibers are highlighted.</td>
</tr>
<tr>
<td>Figure 6-2</td>
<td>A cross-section of a hollow fiber can be seen in the middle fiber in this SEM micrograph. Hollow fibers of smaller diameter may be potentially more damaging as they tend to fill faster with conductive medium.</td>
</tr>
<tr>
<td>Figure 8-1</td>
<td>Typical Copper Wicking in a Plated Through Hole</td>
</tr>
<tr>
<td>Figure 8-2a</td>
<td>Internal Separation</td>
</tr>
<tr>
<td>Figure 8-2b</td>
<td>Damage Due to Hole Drilling and Wicking</td>
</tr>
<tr>
<td>Figure 9-1</td>
<td>IPC-9253 Test Coupon Region A: Plated Through Holes in Alignment with X, Y</td>
</tr>
<tr>
<td>Figure 9-2</td>
<td>Region B Via Test Pattern. The Anode Vias are Staggered Diagonally to the Cathode Vias</td>
</tr>
<tr>
<td>Figure 9-3</td>
<td>The gap between solder mask and metal can create a channel that entraps contaminants, such as in this example of a product failure (not a CAF coupon).</td>
</tr>
<tr>
<td>Figure 9-4</td>
<td>Potential solder mask anomalies on ECM coupons, which can cause surface defects unrelated to target ECM performance. LEFT: poor solder mask adhesion; RIGHT: broken solder mask webs.</td>
</tr>
<tr>
<td>Figure 9-5</td>
<td>Some surface defects can be challenging to find, such as this small dendrite on an ECM coupon.</td>
</tr>
<tr>
<td>Figure 9-6</td>
<td>Severe damage caused by heavy dendritic growth resulted in complete disqualification of test results from this ECM test coupon.</td>
</tr>
<tr>
<td>Figure 9-7</td>
<td>LEFT: This image illustrates how plugged and covered vias are effective at eliminating corrosion, compared with adjacent, non-plugged vias. RIGHT: Cross section of ink-plugged via, covered with solder mask.</td>
</tr>
<tr>
<td>Figure 9-8</td>
<td>LEFT: voiding and incomplete fill is typical with solder mask ink-plugged vias. RIGHT: via filling with epoxy resin is highly consistent and repeatable.</td>
</tr>
<tr>
<td>Figure 13-1</td>
<td>TB38A as Manufactured by Board House with NiAu (ENIG) Finish</td>
</tr>
<tr>
<td>Figure 13-2</td>
<td>Schematic of In-Line Test Comb, With Possible Failure Site</td>
</tr>
<tr>
<td>Figure 13-3</td>
<td>Schematic Section of Via Pair With Bias Applied</td>
</tr>
</tbody>
</table>

1 SCOPE
This document is the product of the IPC Electrochemical Migration (ECM) Task Group. It was drafted to provide guidance regarding implementation of the User Guide for the IPC-TM-650, Method 2.6.25, Conductive Anodic Filament (CAF) Resistance and Other Internal Electrochemical Migration Testing to evaluate the effects of mechanical stress, laminate material fracturing, ionic contamination, moisture content prior to press lamination, and other material processing characteristics on formation of conductive paths within laminate material such as conductive anodic filaments (CAF), one specific type of ECM failure mode. This internal ECM test method provides a proven standard for determining the risk of through-hole bias and other internal conductor orientations that result in significant reduction of insulation resistance internally, rather than on the surface of printed boards.

2 BACKGROUND
In recent years, internal electrochemical migration (ECM) liability concerns in the industry have increased as board designs have advanced in terms of decreasing clearances, dimensions and/or higher voltages. ECM failures describe any phenomena that causes internal drop in insulation resistance, including conductive anodic filament (CAF) formation, weak polymer resin bond, hollow fibers, poor wetting of glass reinforcement fibers with resin, foreign material or contamination, rough hole walls, and excessive copper wicking within plated through holes. Temperature, humidity and bias testing of insulation resistance using test coupons is the methodology used to check for these defects. The user of this document is encouraged to become familiar with IPC-9201, Surface Insulation Resistance Handbook to distinguish between internal ECM failures and possible confounding Surface Insulation Resistance (SIR) failures.

3 PURPOSE
This user guide addresses test issues regarding determining pass/fail criteria based on knowledge of three product goals:

a) What are the long term reliability requirements?
b) What is the closest spacing required for a given voltage?
c) Evaluate the internal ECM Failure risk.

4 INTRODUCTION
Internal ECM, including conductive filament growth occurs within a printed board and may or may not be visible under a microscope. It is often associated with adjacent laminate material fracturing or defect (i.e., “pathway”) that contributed to its formation. Examples of visible filament growth shown in Figures 4-1, 4-2, 4-3 and 4-4 would fail the temperature, humidity, and bias conditions selected to determine multilayer board reliability between internal features.

The high magnification photo, Figure 4-1 below, shows a printed board with layer 1 (top layer) removed, revealing a near shorting condition between the plated through hole and layer 2 ground plane.

Poor press lamination and/or defective prepreg material may contribute to entrapped contaminants and the formation of conductive pathways which results in early test failure if the resin/reinforcement bonding strength and resistance to mechanical stress is reduced.

Failure analysis, as seen in two perspectives in Figure 4-2, show a near-shorting condition from the hole barrel to the plane on layer 3.