User Guide for the
IPC-TM-650, Method
2.6.25, Conductive Anodic Filament (CAF) Resistance Test (Electrochemical Migration Testing)

Developed by the Electrochemical Migration Task Group (5-32e) of the Cleaning and Coating Committee (5-30) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1219
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 SCOPE ... 1
2 INTRODUCTION ... 1
3 PURPOSE ... 1
4 BACKGROUND .. 1
5 WHAT IS CONDUCTIVE ANODIC FILAMENT GROWTH? 3
6 INCREASING CAF RISK TRENDS 3
7 ADJUSTED CALCE CAF FAILURE MODEL 4
8 CAF TEST VEHICLE DESIGN 5
9 CAF TEST BOARD SAMPLE PREPARATION 6
10 CAF TEST DATA FORMAT 6
11 SAMPLE SIZES .. 8
12 RELATING CAF TEST RESULTS TO EXPECTED FIELD LIFE 9
13 SPECIFYING CAF RESISTANCE 9
14 LOCATION OF TESTING ... 10
15 LOCATING CAF FAILURES 10
16 FACTORS AFFECTING CAF RESISTANCE 10
17 CONCLUSIONS .. 14
18 SUMMARY .. 14

Figures

- Figure 4-1 Conductive Filament Example 1
- Figure 4-2 Two Perspectives of the Same Conductive Filamen ... 2
- Figure 4-3 Two Photos Showing Failure Between Plated Through Holes .. 2
- Figure 4-4 Failure Analysis Photo Showing Suspected CAF Failure Between Very Closely-Spaced Plated-Through Holes .. 2
- Figure 7-1 Typical Copper Wicking in a Plated-Through Hole .. 4
- Figure 8-1 Region A: Plated Through Holes in Alignment with X, Y ... 5
- Figure 8-2 Region B: Plated Through Holes in Diagonal Orientation .. 5
- Figure 11-1 TB38A as Manufactured by Board House with NiAu (ENIG) Finish 8
- Figure 11-2 Schematic of In-Line Test Comb, With Possible Failure Site .. 8
- Figure 11-3 Schematic Section of Via Pair With Bias Applied .. 8
- Figure 11-4 Schematic of Staggered Test Comb, With Possible Failure Site 9
- Figure 11-5 CAF Test Coupons Under Test in Environmental Chamber .. 9
- Figure 13-1 Example of the Electrical Effect of a Typical CAF Failure .. 10
- Figure 15-1 Schematic Section to Illustrate Polishing to Locate CAF .. 10
- Figure 15-2 Example Photograph of ‘Flash over,’ Normally Seen on Small Gaps with High Voltage 10
- Figure 16-1 Effect of Via Wall-to-Wall Gap on TTF .. 11
- Figure 16-2 Effect of Via Alignment on TTF, for 2113 and 2116 Glass-Reinforced Laminates 11
- Figure 16-3 Effect of Surface Finish on TTF ... 11
- Figure 16-4 Effect of Drill Feed Rate .. 12
- Figure 16-5 Effect of Reflow .. 12
- Figure 16-6 Effect of Board House .. 13
- Figure 16-7 Effect of Material Tg .. 13
- Figure 16-8 Effect of Reinforcement - Board House A, Drill 1, NiAu (ENIG) Finish 13
- Figure 16-9 TTF Data for CAF and Non-CAF Resistant Lamineate .. 14

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 6-1</td>
<td>Plated-Through Hole Wall-to-Wall Spacing Trends 3</td>
</tr>
<tr>
<td>Table 10-1</td>
<td>Typical SIR-Type Resistance Data Reporting ... 6</td>
</tr>
<tr>
<td>Table 10-2</td>
<td>Same Data from Table 10-1, Sorted for Each CAF Analysis 7</td>
</tr>
<tr>
<td>Table 10-3</td>
<td>Typical SIR-Type Resistance Data Reporting ... 7</td>
</tr>
<tr>
<td>Table 16-1</td>
<td>Coupon Conditions Selected for Comparison of Surface Finishes 11</td>
</tr>
<tr>
<td>Table 16-2</td>
<td>Coupon Conditions Selected for Comparison of Drill Parameters 12</td>
</tr>
<tr>
<td>Table 16-3</td>
<td>Coupon Conditions Selected for Comparison of Reflow Conditions 12</td>
</tr>
<tr>
<td>Table 16-4</td>
<td>Coupon Conditions Selected for Comparison of Manufacturing Site 12</td>
</tr>
<tr>
<td>Table 16-5</td>
<td>Coupon Conditions Selected for Comparison of Material Tg 13</td>
</tr>
<tr>
<td>Table 16-6</td>
<td>Coupon Conditions Selected for Comparison of Reinforcements 13</td>
</tr>
<tr>
<td>Table 16-7</td>
<td>Coupon Conditions Selected for Comparison of CAF Designation 14</td>
</tr>
</tbody>
</table>
1 SCOPE

This document is the product of the IPC Electrochemical Migration (ECM) Task Group. It was drafted to provide guidance regarding how the IPC-TM-650, Method 2.6.25, Conductive Anodic Filament (CAF) Resistance test can best be used for evaluating the effects of mechanical stress, laminate material fracturing, ionic contamination, moisture content prior to press lamination, and other material processing characteristics on conductive anodic filament (CAF) growth. This CAF test method provides a proven standard for determining the risk of THB failure within rather than on the surface of printed circuit boards (PCBs), typically filament formation along the boundary between the resin and laminate reinforcement.

2 INTRODUCTION

Conductive Anodic Filament (CAF) growth is a conductive copper-containing salt created electrochemically that grows from the anode toward the cathode subsurface along the epoxy/glass interface. The formation of atacamite as a conductive filament was first reported on a board surface in 1971 (Raffolvich). It was not reported as a type of electrochemical migration failure until 1979 [1]. More recently CAF reliability concerns in the industry have increased as board designs have advanced in terms of decreasing dimensions and/or higher voltages.

The mechanism for CAF is the transfer of copper (Cu) ions and the deposition of Cu salts in the presence of moisture and voltage bias influenced by concentration and pH gradients. The conductive path is the growth from the anode by a salt, as compared to dendrite formation on the surface of the board where metal ions deposit on the cathode [2]. CAF is associated primarily with mechanically drilled holes where the mechanical drilling disrupts the glass reinforcement fibers in glass bundles permitting the absorption of subsequent processing chemistry between the fibers and epoxy. The user of this document is encouraged to become familiar with IPC-9201, Surface Insulation Resistance Handbook, so as to distinguish CAF failures and possible confounding Surface Insulation Resistance failures.

3 PURPOSE

This user guide addresses test issues regarding determining internal feature CAF resistance based on knowledge of three product goals:

a) What are the long term reliability requirements?
b) What is the closest spacing required for a given voltage differential?
c) What is the maximum safe voltage differential between features with a given spacing?

4 BACKGROUND

Where large conductive filament growth is visible under a microscope, often there is some adjacent laminate material fracturing or defect that contributed to its formation. Examples of such visible filament growth follow. Only Figure 4-4 may show a true atacamite filament, however all examples shown in Figures 4-1, 4-2, 4-3 and 4-4 would fail the temperature, humidity, and bias conditions selected to determine multilayer board reliability between internal features.

The high magnification photo, Figure 4-1 below, shows a PCB with layer 1 (top layer) removed, revealing a near shorting condition between the plated-through hole and layer 2 ground plane. [Photo courtesy of Matsushita]

![Figure 4-1 Conductive Filament Example](image)

Poor press lamination and/or defective prepreg material may contribute to conductive filament formation if the resin/reinforcement bonding strength and resistance to mechanical stress is reduced.

Failure analysis, as seen in two perspectives in Figure 4-2, show a near-shorting condition from the hole barrel to the plane on layer 3.

During CAF testing, the use of a low bias voltage and at least 1.0 megohm current limiting resistor can facilitate,