Table of Contents

1. Introduction .. 1
 1.1 Scope .. 1
 1.2 Purpose .. 1
 1.3 Why do SIR testing? 1

2. Surface Insulation Resistance 2
 2.1 Definitions.................................... 2
 2.1.1 Metal Migration/Filament Formation 4
 2.1.2 Electrochemical Corrosion............... 6
 2.2 Basic Concepts 7
 2.2.1 Sheet Resistance 7
 2.2.2 A “Square” 8
 2.2.3 Series/Parallel Resistance 8
 2.2.4 Ohms Per Square 9
 2.2.4.1 Examples of Square Count Calculations 9
 2.2.4.2 Use of Squares Information 11
 2.2.5 Conduction Mechanisms 11

3. Assessment of SIR Test Methods......... 19
 3.1 Test Methods - General 19
 3.1.1 Cyclical Test Environments 19
 3.1.2 Harsh Static Environments 19
 3.1.3 Benign Static Environments 20
 3.1.4 Measurement Frequency 20
 3.2 Description of Test Methods 20
 3.3 Use of Salt Solutions 21
 3.4 Acceleration Factors 21
 3.4.1 Arrhenius Model 21
 3.4.2 Eyring Model 21

4. Setting Up for SIR Testing 22
 4.1 Data Acquisition and Associated Hardware 22
 4.2 Fixturing 23
 4.2.1 Internal to Chamber 23
 4.2.2 External to Chamber 23
 4.3 Chamber Design and Configuration 24
 4.4 System Verification and Calibration ... 25
 4.4.1 The Chamber 25
 4.4.2 The Data Acquisition System 25

5. Running a Test and Test Consistency 26
 5.1 Substrate Preparation 26
 5.1.1 Test Specimen Marking 27
 5.2 Test Specimen Controls 27
 5.3 Pre-Test Checks 28
 5.3.1 Chamber 28
 5.3.2 Test Specimens 29
 5.3.3 Sample Randomization and Placement .. 30
 5.3.3.1 Placement of Specimens in Chamber .. 30
 5.4 Starting the Test 31
 5.5 Test Chamber Monitoring 32
 5.6 Post-Test Operations 32
 5.7 Data Analysis Example 33
 5.8 Treatment of “Anomalous” Data 35

6. Qualification Phases 36
 6.1 Materials vs. Process Qualification 36
 6.2 Determining Acceptance Criteria 36
 6.2.1 Readings vs. Visual Examination 36
 6.2.2 Temperature and Humidity Variations 37
 6.2.3 Discussion of Test Specimen Design .. 37
 6.2.4 Available SIR Test Vehicles 37
 6.2.4.1 IPC-B-24 Standard Test Board 38
 6.2.4.2 IPC-B-36 Standard Test Assembly .. 38
 6.2.4.3 IPC-B-25 Standard Test Board 39
 6.2.4.4 IPC-B-25A Solder Mask Qualification Board 40
 6.2.4.5 Bellcore Test Pattern 40
 6.2.4.6 Low Residue Soldering Task Force (LRSTF) Test Vehicle 40
 6.2.4.7 ARPA ETC '96 Test Vehicle 41

7. Recommendations for Prevention of SIR Failures 41
 7.1 Typical SIR Failures 41
 7.2 Contingencies - Now What Do I Do??? 42
 7.3 Other Recommendations 44

8. SIR Testing on Non-PWB Materials 44
 8.1 Alternative Substrates 44
 8.2 Testing Other PWB Materials 45
 8.3 High Resistance Measurements 45
 8.4 Integrated Circuits (Wafers) 46
 8.5 Multi-chip Modules (MCMs) 46

9. References .. 46
 9.1 Published Papers 46
 9.2 Industry Contacts 47
 9.2.1 SIR Equipment Vendors 48

Appendix A Literature Review 48
Appendix B Listing of Test Methods and Criteria ... 50

Tables

Table B-1 Listing of Test Methods and Criteria ... 50
Table B-2 SIR Test Method Summary (provided by Ericsson) 52
Table B-3 SIR Test Method Summary (provided by Ericsson) 53
Table B-4 .. 55
1. Introduction

Surface Insulation Resistance (SIR) testing has been with the electronics industry since the advent of the transistor and printed circuit board. It has been used as a tool for: incoming inspection; materials investigations and qualifications; quality conformance; prediction of long-term failure mechanisms; and as a predictive tool for estimated service life.

SIR, in its various incarnations, has as many different meanings and interpretations as the individuals who might be asked to define it. Test conditions and techniques vary so widely, that this "science" has come to be viewed as voodoo or "black magic". SIR should be viewed as a tool, but one which needs refinement and understanding to use properly.

The IPC SIR Task Group was formed to undertake a mission of education and technical refinement of this testing into a better, more accurate, predictive tool.

1.1. Scope

This document is intended to cover the broad spectrum of temperature-humidity (TH) testing, associated terminology, and suggested techniques for proper testing. This edition of the Handbook primarily covers the test methods used in the United States. Future revisions of the Handbook will address more of the available international test methods.

1.2. Purpose

The purpose of this document is to educate individuals who must deal with temperature-humidity (TH) or temperature-humidity-bias (THB) testing. The target audience for this work ranges from the technicians running the test, to engineers who must interpret the data, to those individuals responsible for specifications and standards which may call out these tests.

As TH testing is a science in need of refinement, this document does not have "all the answers". The guidance presented here represents the experience and technical input from many of the most knowledgeable testers in the IPC. This handbook does not go into great depth on the underlying physics of many of the mechanisms found in SIR testing. This is best left to more theoretical texts.

TH and THB testing may also be related to other forms of testing, such as noise factor, corrosion testing, determination of bandwidth, characteristic impedance, etc.

1.3 Why do SIR testing?

In general, TH or THB testing is done to show evidence of the loss of integrity or reliability in a materials system. Loss of integrity may include: conformal coating or solder mask adhesion failure (less protection from the environment); decreases in dielectric strength; electrolytic corrosion; or electrochemical migration. Each of these may represent shortcomings in materials, manufacturing methods, or a susceptibility to a particular failure mechanism, which would not be desirable in the end product.

Various profiles are used to test specific failure mechanisms. The choice of cyclical or static environments, high temperature/humidity environments depends on what failure modes you are examining. Cyclical tests or TH tests examine materials properties and are often used to simulate an end-use storage environment. High-temperature/humidity tests are most often used to test for