Cleaning Methods and Contamination Assessment for Optical Assembly

Developed by the Photonic Component/Fiber Handling Task Group (5-25a) of the Optoelectronics Assembly Subcommittee (5-25) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1219
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 SCOPE .. 1

1.1 Intent ... 1

1.2 Caution Reminders .. 1

1.2.1 Safety Cautions ... 1

1.2.2 Electrostatic Discharge (ESD) Caution 1

2 APPLICABLE DOCUMENTS 1

2.1 IPC-Association Connecting Electronics Industry 1

2.2 IEC-International Electrotechnical Commission 1

2.3 TIA-Telecommunications Industry Association 1

3 TERMS AND DEFINITIONS 1

4 CLEANING SPECIFICATION 2

4.1 General Information ... 2

4.1.1 Cleaning Process Flow 4

4.1.2 Inspection Criteria Matrix 4

4.1.3 Understanding MT-Ferrule Connectors 5

4.1.4 Understanding Composite Bi-Metallic-Ferrule Connectors 5

4.1.5 Inspection Criteria for Receptacles (with Internal Fiber Stubs) 5

4.1.6 Illustrations of Receptacle Devices (with Internal Fiber Stubs) 5

4.1.7 Inspection Criteria for Receptacles (with Lenses) 5

5 CONTAMINATION ... 7

6 INSPECTION EQUIPMENT 8

6.1 Overview .. 8

6.2 Equipment .. 8

6.2.1 Optical Microscope ... 8

6.2.2 Video Microscope ... 8

6.2.3 Automated End-Face Inspection System 9

6.2.4 Interferometer ... 9

6.3 Performance Issues .. 9

6.4 Inspection Application .. 10

6.5 Inspection Templates ... 11

7 CLEANING METHODS .. 11

7.1 Procedures for Use .. 11

7.2 Description of Items to be Cleaned 11

7.3 Description of Common Cleaning Methods ... 12

7.3.1 Compressed Gas ... 12

7.3.2 Dry wipes and Cleaning Cassettes 13

7.3.3 Cleaning Fluids/Wet Wipes 13

7.3.4 Dry Swabs ... 14

7.3.5 Sticking Tapes/Adhesive Tapes 14

7.3.6 Cleaning Fluids and Wet Swabs 15

7.3.7 Machines ... 15

7.3.8 Notes About Cleaning Fluids 15

7.4 Method Evaluation and Qualification 15

8 END-CAPS ... 16

8.1 History - Material .. 16

8.2 History - Design/Shape 17

8.3 Material Properties ... 18

8.4 Unacceptable Materials 18

8.5 Manufacturing Process of End-Caps 18

8.5.1 Molding ... 18

8.5.2 Cleaning ... 19

8.5.3 Packaging ... 19

8.6 End-cap Design ... 19

8.6.1 Form .. 19

8.6.2 Fit ... 19

8.6.3 Function .. 19

8.7 Recommendation ... 19

9 PERFORMANCE TESTING 19

9.1 Method Evaluation and Qualification for Cleaning Solutions 19

9.1.1 Contamination of the Microscope 20

9.1.2 Devices Under Test .. 20

9.1.3 Patch Cords .. 20

9.1.4 Bulkhead Adapters .. 21

9.1.5 Intended Device ... 21

9.1.6 Contamination Technique 21

9.1.7 Patch Cords .. 21

9.1.8 In Situ End-Faces .. 21

9.1.9 Lens Elements .. 21

9.1.10 Alignment Sleeve and Other Surfaces 21

9.1.11 Procedure and Data Collection 21

9.1.12 Post Test Degradation Testing 22

9.1.13 Data Analysis ... 23

9.1.14 Qualification/Disqualification 23

10 ELECTROSTATIC CHARGE EFFECT (ESC) AND CONNECTOR CLEANLINESS 23

Figure 4-8 More Receptacle Devices: 1.) Middle - Xenpak which use SC ports; 2.) Left - SFF which can use a variety of optical ports (LC shown); and 3.) Right - POD which can use a variety of optical ports (MTP shown). (Note that it cannot be determined if these devices use fiber stubs or lenses until the ports are inspected with a fiberscope.)

Figure 5-1 EDX Spectrum of a Contaminated Connector Showing “Human” Contamination

Figure 5-2 Contaminated and Damaged Connector End-Face [1]

Figure 6-1 Optical Microscope

Figure 6-2 Video Microscope

Figure 6-3 Automated Inspection System

Figure 6-4 Hand Held Optical Microscope Utilized on Typical In-Hand Connectors

Figure 6-5 Hand Held Video Scope/Adaptors

Figure 6-6 Bench Top System

Figure 6-7 Probe Unit

Figure 6-8 Typical Inspection Template

Figure 7-1 Typical Canned Air Dispenser

Figure 7-2 Typical Lint Free Wipes (Paper), Cleaning Cassette (Cloth) and Card Cleaner (Cloth) and In-Situ Cassette (Cloth)

Figure 7-3 Comparison of Particulate Contamination in Washed and Unwashed Cleaning Cloth [18]

Figure 7-4 Typical FO Connector Cleaning Swabs

Figure 8-1 (a) Close-up of the PVC End-cap for ST Connector. (b) EDX Spectrum of the Contamination from the End-face of the ST Connector Showing the Presence of Aluminium.

Figure 8-2 (a) Fiberscope image of Contaminated Connector with Organic Film. (b) FTIR Spectra of the Organic Film-Polydimethylsiloxane (PDMS).

Figure 8-3 X-ray images of end-cap for ST connectors: (a) Standard size ferrule-type, (b) Short ferrule-type, (c) newly designed, non-contact end-cap.

Figure 8-4 (a) Close-up of the connector ferrule with the blue, short end-cap. (b) Arrows indicating metallic and organic contamination inside of white, ferrule-type end-cap.

Figure 10-1 ST type connector and the sample obtained by cutting and separating the fiber from rest of the cable

Figure 10-2 SC type connector and the exposed fiber sample obtained by stripping the blue plastic covering.

Figure 10-4 Experimental Flowchart of ESD Experiment

Figure 10-3 Apparatus Setup Example
Figure 10-5 ESC calculated, generated by Cleaning System 1[14], cleaning process with Cleaning System 1 in front of air ionizer, Cleaning System 1 with air ionizer and additional exposure of the connector endface to ionized air (10S), Cleaning System 2 cleaning, Cleaning System 2 cleaning in front of air ionizer. .. 25

Figure 10-6 The dependence of the charge generated from number of swiping operations performed with Cleaning System 1 or Cleaning System 2 at different humidity levels; temperature was 20°C. .. 26

Figure 11-1 This graph compares RL of the connectors from the two scratch experiment groups (wavelength is 1550 nm). .. 27

Figure 11-2 Loose Carbon Particles Transferring Pattern (Through SC-SC Adapter Connection) 27

Figure 11-3 A particle blocked approximately 20-40% of the fiber core. IL-1550 nm/1310 nm (clean connector) = 0.39/0.51 dB; IL-1550 nm/1310 nm (contaminated connector) = 2.88/3.61 dB. RL-1550 nm/1310 nm (clean connector) = 56.2/54.6; RL-1550 nm/1310 nm (contaminated connector) = 37.1/34.5 dB. .. 28

Figure 11-4 Experimental results showing the impact of particle distance from the core on IL and RL. An average particle size was 5-20 µm. A large particle with the diameter >100 µm located at the distance of ~18 µm from the core resulted in catastrophic failure as shown in Figure 11-5. .. 28

Figure 11-5 The fiberscopic image of contaminated connector. IL-1550 nm/1310 nm (clean connector) = 0.16/0.23 dB; IL-1550 nm/1310 nm (contaminated connector) = 16.67/18.00 dB. RL-1550 nm/1310 nm (clean connector) = 57.5/56.0; RL-1550 nm/1310 nm (contaminated connector) = 20.30/18.08 dB. The edge of the particle is located at the distance of ~18 µm from the middle of the core. .. 28

Figure 11-6 Typical amount of particles on Ferrule. IL-1550 nm/1310 nm (clean connector) = 0.19/0.2 dB; IL-1550 nm/1310 nm (contaminated connector) = 0.21/0.21 dB. RL-1550 nm/1310 nm (clean connector) = 55.7/54.5 dB; RL-1550 nm/1310 nm (contaminated connector) = 55.6/54.5 dB. .. 28

Figure 11-7 The typical fiberscopic images of the connector, contaminated with finger prints after mating with clean reference connector (a), fiberscopic image of the reference fiber after mating with oil contaminated fiber (b). IL (clean connector) - 1550 nm/1310 nm = 0.22 dB/0.27 dB, RL (clean connector) - 1550/1310 nm = 58.1 dB/56.9 dB, IL (contaminated connector) - 1550 nm/1310 nm = 0.23 dB/0.27 dB, RL (contaminated connector) - 1550 nm/1310 nm = 41.2/39.8 dB. ... 29

Figure 11-8 Field of View Examples 30

Figure 11-9 Objective Lens Numerical Aperture 31

Tables

Table 4-1 Acceptance Criteria for Nonangled PC Polish Connectors .. 4
Table 4-2 Acceptance Criteria for Receptacles 6
Table 7-1 Cleaning Need vs. Cleaning Method 12
Table 7-2 Comparison of Cleaning Fluid Properties 16
Table 8-1 Summary of Design and Material Properties from ST End-Cap Study .. 17
Table 8-2 End-Cap Material and Design Property Requirements .. 18
Table 8-3 Unacceptable End-cap Materials 19
Table 9-1 Equipment ... 20
Table 9-2 Recommended DUT's for each Cleaning Application 20
Table 9-3 Example of Data Collection from Cleaning Experiment .. 22
Cleaning Methods and Contamination Assessment for Optical Assembly

1 SCOPE
The scope of this specification is to describe the methods of inspecting and cleaning all optical interfaces so that their interconnectivity does not result in loss of optical signal. It also describes methods of contamination prevention.

The target audience for this standard are Manufacturing Operators, Manufacturing Process Engineers, Quality Engineers and Field System Installers.

1.1 Intent
The intent of this standard is not to state a specific all inclusive process or procedure for cleaning optical connectors but rather to show several processes which are used in the industry and the advantages and disadvantages for each process. It will also provide an evaluation method for each process so that each reader may test or qualify each process to find out which one works best for their application. It is not the intent of this standard to advocate any specific products even though some product names may be referenced as a matter of usage in processes/procedures/testing discussed in each section.

1.2 Caution Reminders
1.2.1 Safety Cautions
Operators shall ensure that there is no active laser light source generating a light signal through the fiber that is being cleaned or inspected. Remember many laser signals are invisible to the human eye.

It should also be noted to never look into a ferrule end-face while the system’s laser is active. It is important to understand the equipment’s operating procedures and warnings.

1.2.2 Electrostatic Discharge (ESD) Caution
When working in an environment that couples optical fiber and electronic components the operator must adhere to all ESD prevention rules.

2 APPLICABLE DOCUMENTS
2.1 IPC-Association Connecting Electronics Industry
IPC-T-50 Terms and Definitions
IPC-0040 Optoelectronics Assembly and Packaging Technology

2.2 IEC-International Electrotechnical Commission
EC-60194 Terms and Definitions

2.3 TIA-Telecommunications Industry Association
TIA/EIA-604 (FOCIS) [13].

3 TERMS AND DEFINITIONS
Terms used in this standard are in accordance with IPC-T-50, IEC 60194, or IPC-0040. The following additional terms are also defined.

Adaptor The metal or plastic body that mates two connectors of same or different types.

Alignment Sleeve A circular collar that is usually mounted into a chassis connector intended to help align the connecting fibers as they are plugged into the chassis to complete an optical circuit.

Bit Error Rate (BER) See Bit Error Ratio.

Bit Error Ratio (BER) Used as the fundamental measure of the component’s performance, and is defined as the following:

$$\text{BER} = \frac{E(t)}{N(t)}$$

Where BER is the bit error ratio, $E(t)$ is the number of bits received in error over time t, and $N(t)$ is the total number of bits transmitted in time t.

Bit Error Rate Tester (BERT) Apparatus used to test for BER.

Cleaning Cassette Fabric

Coaxial Illumination When an object is being viewed using light which strikes the surface along the line of sight. This is usually accomplished with a beam splitter. This type of lighting shows the differences in surface textures.

Colored Light The hue of a given wavelength.

DUT Device Under Test.

Detection The ability of an optical system to detect an object or defect of a particular size.

Eyepiece Lens The lens of a compound microscope that is nearest to the eye of the observer.