Guideline for Design, Material Selection and General Application of Encapsulation of Electronic Circuit Assembly by Low Pressure Molding with Thermoplastics

Developed by the Low Pressure Molding Task Group (5-33g) of the Cleaning and Coating Committee (5-30) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
Table of Contents

1 **SCOPE** ... 1

1.1 Purpose ... 1

2 **APPLICABLE DOCUMENTS AND TERMS AND DEFINITIONS** ... 1

2.1 Applicable Documents ... 1

2.1.1 IPC ... 1

2.1.2 United States Food and Drug Administration (FDA) ... 1

2.1.3 Underwriters Laboratories (UL) .. 2

2.2 Terms and Definitions .. 2

2.2.1 Adhesion .. 2

2.2.2 Air Bubbles .. 2

2.2.3 Blister ... 2

2.2.4 Blow Through (Molding)* .. 2

2.2.5 Board Deflection ... 2

2.2.6 Char .. 2

2.2.7 Computational Fluid Dynamics (CFD) 2

2.2.8 Cracking* .. 2

2.2.9 Flash (Plastic)* .. 2

2.2.10 Flow Holes ... 2

2.2.11 Gate ... 2

2.2.12 Gate Mark (a.k.a. Gate Vestige) 2

2.2.13 Horizontal Injection ... 2

2.2.14 Hot-Runner .. 2

2.2.15 Knit Lines ... 2

2.2.16 Low Pressure Molding (LPM) 2

2.2.17 Mold Flow .. 2

2.2.18 Molded ... 2

2.2.19 Probe Points* ... 3

2.2.20 Runner ... 3

2.2.21 Short-Shot ... 3

2.2.22 Shut-Off ... 3

2.2.23 Sink Marks* .. 3

2.2.24 Vertical Injection ... 3

2.2.25 Voids in LPM .. 3

3 **CONSIDERATIONS** .. 3

3.1 Thermoplastic Materials .. 3

3.1.1 Thermoplastic Polymer Types 3

3.1.1.1 Polyamide ... 3

3.1.1.2 Polyolefin .. 3

3.1.1.3 Other Materials That Are Sometimes Used in Low Pressure Molding .. 3

3.1.1.3.1 Copolymers ... 3

3.1.2 Visual ... 3

3.1.3 Chemical Resistance ... 3

3.1.4 Thermal Characteristics .. 4

3.1.5 Outgassing ... 4

3.1.6 Shrinkage/Residual Stress .. 4

3.1.7 Adhesion ... 4

3.1.8 Coefficient of Thermal Expansion (CTE) 4

3.1.9 Hardness (Durometer) .. 4

3.1.10 Young’s Modulus ... 4

3.1.11 Modulus of Elasticity ... 4

3.1.12 Electrical Insulation Characteristics of Thermal Plastics ... 4

3.1.12.1 Dielectric Properties/RF Properties 4

3.1.12.2 Dielectric Withstanding Voltage (DWV) 4

3.1.12.3 Insulation Resistance .. 4

3.1.12.4 Permittivity (Dielectric Constant) and Loss Tangent (Dissipation Factor) .. 4

3.1.12.5 Radio Frequency (RF) Properties 5

3.1.13 Processing Characteristics .. 5

3.1.13.1 Viscosity .. 5

3.1.13.2 Flammability .. 5

3.1.13.3 Polymers .. 5

3.1.13.4 Polyolefin .. 5

3.1.13.5 Polystyrene .. 5

3.1.13.6 Polyvinyl Chloride ... 5

3.1.13.7 Polyethylene .. 5

3.1.13.8 Polypropylene .. 5

3.1.13.9 UV Stability ... 5

3.1.13.10 Radiation .. 5

3.1.13.11 Glass Transition Temperature (T_g) 5

3.1.14 Select with End Environment in Mind 5

3.2 Compatibility of LPM Thermoplastic Materials ... 6

3.2.1 Compatibility with Other Process Materials 6

3.2.1.1 Chemical Adhesion Primers 6

3.2.1.2 Fillers ... 6

3.2.1.3 Chemical Compatibility and Resistance 6

3.2.1.4 Biological Compatibility 6

3.2.2 Material Data .. 6

3.2.2.1 Manufacturers Data Sheet 6

3.2.2.2 Safety Data Sheet (SDS) 7

3.2.3 RoHS, REACH, WEEE, etc. .. 7
3.6 Design Considerations and Good Practice Guidelines .. 10

3.6.1 Considerations for LPM with Thermoplastic Success and Printed Board Assembly Component Materials .. 10

3.6.2 Residues Related to Printed Board and Component Manufacturing and Assembly Processes .. 10

3.6.3 Plasma Treatment – Prior to Molding .. 10

3.6.4 Soldermask .. 10

3.6.5 Molded Material Thickness – Cross Sectional Thickness .. 10

3.6.6 Material Properties and Dependence on Processing Methods .. 10

3.6.7 What can be Considered to be Low Pressure Molded? .. 11

3.6.8 What Should be Considered to not be Low Pressure Molded? .. 11

3.6.9 Parting Line .. 11

3.6.10 Material Thickness .. 11

3.6.11 Shut-Offs .. 11

3.6.12 Use of Hard Tooled Reusable Masking .. 12

3.6.13 Probe Points .. 12

3.6.14 Shut-Off Areas Around Non-Molded Components .. 12

3.6.15 Shut-Off Supports .. 12

3.6.16 Mold Around Full Perimeter of Board .. 12

3.6.17 Solder Joints .. 13

3.6.18 Corners/Edges .. 13

3.6.19 Draft Angle .. 13

3.6.20 Degassing the Assembly .. 13

3.6.21 Tooling Holes – Locating the Board Assembly in the LPM Tool Cavity .. 13

3.6.22 Multi-Step Molding .. 13

3.6.23 Models and Drawings – Working in Collaboration .. 13

3.6.24 Component Density and Clearances .. 14

3.6.25 Residues and Surface Texture or Surface Energy of Board Assembly .. 14

3.6.26 Preparation for LPM .. 14

3.6.26.1 Preheating of Printed Board Assembly Effect .. 14

3.6.27 Material Containers .. 14

3.6.28 Mold Release Agents .. 14

3.6.29 LPM Over Predeposited Encapsulants or Dispensed Gasketing .. 14

4 ACCEPTABILITY CRITERIA GUIDELINES .. 15

Figures

Figure 3-1 Balance of Material Thickness Around Board .. 11

Figure 3-2 Flow Holes (in board substrate) .. 13

Figure 4-1 Lightly Textured Surface .. 15

Figure 4-2 Cloudy Surface .. 15

Figure 4-3 Deformed Area (top view) .. 15

Figure 4-4 Deformed Area (side view) .. 15

Figure 4-5 Flashing at Gate Site .. 16

Figure 4-6 Gate Mark .. 16

Figure 4-7 Flashing on Wires .. 16

vi
Figure 4-8 Flashing on Wires and Capacitors 16
Figure 4-9 Flashing Present on Board Surface 17
Figure 4-10 Flashing on Connector Mating Surfaces 17
Figure 4-11 Short-Shot Not Along Edge/Corner 18
Figure 4-12 Short-Shot Exposes Board Conductors and Does Not Provide Structural Integrity as Required in a Particular Design 18
Figure 4-13 Short-Shot at Corner .. 18
Figure 4-14 Short-Shot Exposes Uninsulated Wire 18
Figure 4-15 Isolated, Suspended Bubble Present 19
Figure 4-16 Bubble Containing Multiple Pins – However, is not Open and Exposed to Environment 19
Figure 4-17 Bubble Elevates Surface 19
Figure 4-18 Bubble Exposes Board in a Mechanically or Electrically Significant Area 19
Figure 4-19 Isolated Area of Poor Adhesion 20
Figure 4-20 Poor Adhesion Along Shut-Off 20
Figure 4-21 Poor Adhesion Covering Multiple Pins 20
Figure 4-22 Knit Lines are Present 21
Figure 4-23 Cold-Flow Lines are Present Below Gate Mark ... 21
Figure 4-24 Crack is Present (top view) 21
Figure 4-25 Crack is Present (side view) 21
Figure 4-26 No Board Deflection 22
Figure 4-27 Deflected Board (bottom and top board should be parallel) .. 22
Figure 4-28 Deflected Board (bottom and top board should be parallel) .. 22
Figure 4-29 Flecks of Char .. 23
Figure 4-30 Fleck of Char .. 23
Figure 4-31 Vein of Discoloration 23
Figure 4-32 Discolored Board 23
Figure 4-33 Even Surface (Visible Lines are Tooling Marks in Prototype Tool – not the Focus Here) 24
Figure 4-34 Sunken Surface (Visible Lines are Tooling Marks in Prototype Tool – not the Focus Here) 24
Figure 4-35 Broken Connector 25
Figure 4-36 Broken Connector 25
Figure 4-37 Broken Connector 25
Figure 4-38 LPM Ejector Pin Mark on Printed Board 25
Guideline for Design, Material Selection and General Application of Encapsulation of Electronic Circuit Assembly by Low Pressure Molding with Thermoplastics

1 SCOPE
Encapsulation, for the purpose of this document, is defined as a low pressure molded thermoplastic, e.g., polyamide, which is brought to a liquid state and injection molded and (rather quickly) returned to a temperature below its melting point, forming a durable yet pliable (rubbery-like) form. The desired performance characteristics of LPM encapsulation depend on the application and must be considered when selecting material. Users are urged to consult material suppliers for detailed technical data. This guide will aid the user in understanding the capabilities and limits of LPM using thermoplastics. It is the responsibility of the user to determine the suitability, via appropriate testing, of the selected encapsulation and if the application method is suitable for a particular end use application, including but not limited to:

a. Inhibit current leakage and short circuit due to humidity and contamination from service environment.
b. Inhibit corrosion, tarnish.
c. Encapsulation may help in reducing the stresses due to CTE mismatches.
d. Inhibit arcing and corona, in particular, for high voltage applications.
e. Provide mechanical support and to prevent damages due to mechanical shock and vibration.
f. Provide a mitigation method limiting the growth of tin-whiskers.
g. Promote longer battery life in battery operated devices by limiting parasitic voltage leaching.
h. Inhibit ability of dendritic element formation.
i. Prevent damage of circuit by assemblers, installers and end users.

The acceptability criteria listed in this document were chosen with the intent that the printed board assemblies would not be seen by the end user. If the LPM is to be used as the final housing, more restrictions may be set on aesthetics. The acceptability criteria for any one project may be unique and should considered by the design team and consensus reached between designer, tool makers and part manufacturers prior to engaging in a tooling process. The resulting quality and workmanship acceptability may fall beyond the limits called for in this document. If so, those requirements will be AABUS.

1.1 Purpose
The purpose of this handbook is to assist the individuals who must either make choices regarding encapsulation or who must work with LPM encapsulation. IPC-7621 is to provide guidelines for design, material selection, and application specifically as it pertains to electronic components and printed board assembly by Low Pressure Molding with Thermoplastics.

2 APPLICABLE DOCUMENTS AND TERMS AND DEFINITIONS

2.1 Applicable Documents

2.1.1 IPC

IPC-T-50 Terms and Definitions for Interconnecting and Packaging Electronic Circuits

IPC J-STD-001 Requirements for Soldered Electrical and Electronic Assemblies

IPC-A-610 Acceptability of Electronic Assemblies

IPC-HDBK-850 Guidelines for Design, Selection and Application of Potting Materials and Encapsulation Processes Used for Electronics Printed Circuit Board Assemblies

2.1.2 United States Food and Drug Administration (FDA)

21CFR 175.105 Code of Federal Regulations (CFR) Indirect Additives in Food Contact Substances