Generic Requirements for Surface Mount Design and Land Pattern Standard

Developed by the Surface Mount Land Patterns Subcommittee (1-13) of the Printed Board Design Committee (1-10) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1249
Tel 847615.7100
Fax 847615.7105

Supersedes:
IPC-7351A - February 2007
IPC-7351 - February 2005
IPC-SM-782A with Amendments 1 & 2 - December 1999
8 IPC-7352 DISCRETE COMPONENTS54
8.1 Chip Resistors (RESC) .. .54
8.1.1 Basic Construction .. .54
8.1.2 Marking .. .55
8.1.3 Carrier Package Format55
8.1.4 Resistance to Soldering Process55
8.2 Chip Capacitors (CAPC) .. .55
8.2.1 Basic Construction55
8.2.2 Marking .. .55
8.2.3 Carrier Package Format55
8.2.4 Resistance to Soldering Process Temperatures55
8.3 Inductors (INDC, INDM, INDP)56
8.3.1 Basic Construction56
8.3.2 Marking .. .56
8.3.3 Carrier Package Format56
8.3.4 Resistance to Soldering Process Temperatures56
8.4 Molded Body (CAPMP, CAPM, DIOM, FUSM, INDM, INDP, LEDM, RESM)57
8.4.1 Basic Construction57
8.4.2 Marking .. .57
8.4.3 Carrier Package Format57
8.4.4 Resistance to Soldering Process Temperatures57
8.5 Metal Electrode Face (DIOMELF, RESMELF)57
8.5.1 Basic Construction57
8.5.2 Marking .. .57
8.5.3 Carrier Package Format57
8.5.4 Resistance to Soldering Process Temperatures57
8.6 SOT2358
8.6.1 Basic Construction58
8.6.2 Marking .. .58
8.6.3 Carrier Package Format58
8.6.4 Resistance to Soldering Process Temperatures58
8.7 SOT8958
8.7.1 Basic Construction58
8.7.2 Marking .. .58
8.7.3 Carrier Package Format58
8.7.4 Resistance to Soldering Process Temperatures58
8.8 SOD12358
8.8.1 Basic Construction58
8.8.2 Marking .. .58
8.8.3 Carrier Package Format58
8.8.4 Resistance to Soldering Process Temperatures59
8.9 SOT14359
8.9.1 Basic Construction59
8.9.2 Marking .. .59
8.9.3 Carrier Package Format59
8.9.4 Resistance to Soldering Process Temperatures59
8.10 SOT22359
8.10.1 Basic Construction59
8.10.2 Marking .. .59
8.10.3 Carrier Package Format59
8.10.4 Resistance to Soldering Process Temperatures59
8.11 DPAK (TO) .. .60
8.11.1 Basic Construction60
8.11.2 Marking .. .60
8.11.3 Carrier Package Format60
8.11.4 Resistance to Soldering Process Temperatures60
8.12 Electrolytic Aluminum Capacitor (CAPAE)60
8.12.1 Basic Construction60
8.12.2 Marking .. .60
8.12.3 Carrier Package Format60
8.12.4 Resistance to Soldering Process Temperatures60
8.13 Small Outline Diode, Flat Lead (SODFL)/Small Outline Transistor, Flat Lead (SOTFL)61
8.13.1 Basic Construction61
8.13.2 Marking .. .61
8.13.3 Carrier Package Format61
8.13.4 Resistance to Soldering Process Temperatures61
9 IPC-7353 GULLWING LEADED COMPONENTS, TWO SIDES61
9.1 SOIC62
9.1.1 Basic Construction62
9.1.2 Marking .. .62
9.1.3 Carrier Package Format62
9.1.4 Resistance to Soldering Process Temperatures62
9.2 SOP/SOP64 (SOP)63
9.2.1 Basic Construction63
9.2.2 Marking .. .63
9.2.3 Carrier Package Format63
9.2.4 Resistance to Soldering Process Temperatures64
9.3 SOP12764
9.3.1 Basic Construction64
9.3.2 Marking .. .64
9.3.3 Carrier Package Format64
14.4.1 Land Approximation ... 79
14.4.3 Land Pattern Calculator 79
14.5 Chip Array Component Lead Packages 80
14.5.1 Concave Chip Array Packages (RESCAV, CAPCAV, INDCAV, OSCSC, OSCCC) ... 80
14.5.2 Convex Chip Array Packages (RESCAXE, RESCAXS) 80
14.5.3 Flat Chip Array Packages (RESCAF, CAPCAF, INDCAF) ... 81
15 IPC-7359 NO-LEAD COMPONENTS (QFN, PQFN, SON, PSON, DFN, LCC) 81
15.1 LCC .. 81
15.1.1 Marking ... 82
15.1.2 Carrier Package Format 82
15.1.3 Process Considerations 82
15.2 Quad Flat No-Lead (QFN) 83
15.2.1 Marking .. 84
15.2.2 Carrier Package Format 84
15.2.3 Process Considerations 84
15.2.4 Solder Mask Considerations 84
15.3 Small Outline No-Lead (SON) 85
15.3.1 Marking .. 85
15.3.2 Carrier Package Format 85
15.3.3 Process Considerations 85
15.3.4 Solder Mask Considerations 85
15.4 Small Outline and Quad Flat No-Lead with Pullback Leads (PQFN, PSON) 86
15.5 Dual Flat No-Lead (DFN) 86
15.5.1 Basic Construction ... 86
15.5.2 Marking .. 86
15.5.3 Carrier Package Format 86
15.5.4 Resistance to Soldering Process Temperatures 86
16 ZERO COMPONENT ORIENATIONS 86
APPENDIX A (INFORMATIVE) TEST PATTERNS — PROCESS EVALUATIONS 93
A.1 Test Vehicle ... 93
A.2 Test Patterns -In-Process Validator 93
A.3 Stress Testing ... 94
APPENDIX B IPC-7351 LAND PATTERN CALCULATOR ... 95
B.1 Software Installation .. 95
B.2 Software Usage .. 96
B.3 Software Updates .. 96
FIGURES
Figure 3-1 Profile Tolerancing Method 8
Figure 3-2 Example of 3216 (1206) Capacitor Dimensioning for Optimum Solder Fillet Condition 9
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3-1</td>
<td>Tolerance Analysis Elements for Chip Devices</td>
</tr>
<tr>
<td>Table 3-2</td>
<td>Flat Ribbon L and Gull-Wing Leads (greater than 0.625 mm pitch) (unit: mm)</td>
</tr>
<tr>
<td>Table 3-3</td>
<td>Flat Ribbon L and Gull-Wing Leads (less than or equal to 0.625 mm pitch) (unit: mm)</td>
</tr>
<tr>
<td>Table 3-4</td>
<td>J Leads (unit: mm)</td>
</tr>
<tr>
<td>Table 3-5</td>
<td>Rectangular or Square-End Components (Capacitors and Resistors) Equal to or Larger than 1608 (0603) (unit: mm)</td>
</tr>
<tr>
<td>Table 3-6</td>
<td>Rectangular or Square-End Components (Capacitors and Resistors) Smaller than 1608 (0603) (unit: mm)</td>
</tr>
<tr>
<td>Table 3-7</td>
<td>Cylindrical End Cap Terminations (MELF) (unit: mm)</td>
</tr>
<tr>
<td>Table 3-8</td>
<td>Leadless Chip Carrier with Castellated Terminations (unit: mm)</td>
</tr>
<tr>
<td>Table 3-9</td>
<td>Concave Chip Array Component Lead Package (unit: mm)</td>
</tr>
<tr>
<td>Table 3-10</td>
<td>Convex Chip Array Component Lead Package (unit: mm)</td>
</tr>
<tr>
<td>Table 3-11</td>
<td>Flat Chip Array Component Lead Package (unit: mm)</td>
</tr>
<tr>
<td>Table 3-12</td>
<td>Butt Joints (unit: mm)</td>
</tr>
<tr>
<td>Table 3-13</td>
<td>Inward Flat Ribbon L-Leads (Molded Inductors, Diodes & Polarized Capacitors) (unit: mm)</td>
</tr>
<tr>
<td>Table 3-14</td>
<td>Flat Lug Leads (unit: mm)</td>
</tr>
<tr>
<td>Table 3-15</td>
<td>Quad Flat No-Lead (unit: mm)</td>
</tr>
<tr>
<td>Table 3-16</td>
<td>Small Outline No-Lead (unit: mm)</td>
</tr>
<tr>
<td>Table 3-17</td>
<td>Ball Grid Array Components (unit: mm)</td>
</tr>
<tr>
<td>Table 3-18</td>
<td>Small Outline and Quad Flat No-Lead with Pullback Leads (unit: mm)</td>
</tr>
<tr>
<td>Table 3-19</td>
<td>Corner Concave Component Oscillator Lead Package (unit: mm)</td>
</tr>
<tr>
<td>Table 3-20</td>
<td>Aluminium Electrolytic Capacitor and 2-pin Crystal (unit: mm)</td>
</tr>
<tr>
<td>Table 3-21</td>
<td>Column and Land Grid Array (unit: mm)</td>
</tr>
<tr>
<td>Table 3-22</td>
<td>Small Outline Components, Flat Lead (unit: mm)</td>
</tr>
<tr>
<td>Table 3-23</td>
<td>IPC-7351 Land Pattern Naming Convention</td>
</tr>
<tr>
<td>Table 3-24</td>
<td>Product Categories and Worst-Case Use Environments for Surface Mounted Electronics (For Reference Only)</td>
</tr>
<tr>
<td>Table 3-25</td>
<td>Nominal Finished Conductor Width Tolerances, 0.046 mm [0.0018 in] Copper, mm [in]</td>
</tr>
<tr>
<td>Table 3-26</td>
<td>Feature Location Accuracy (units: mm [in])</td>
</tr>
<tr>
<td>Table 3-27</td>
<td>Key Attributes for Various Board Surface Finishes</td>
</tr>
</tbody>
</table>

Table 6-1: Printed Board Structure Comparison
Table 6-2: Printed Board Structure Selection Considerations
Table 6-3: Printed Board Structure Material Properties
Table 8-1: Solderability Tests for Discrete Components
Table 8-2: Solderability, Bath Method: Test Seversities (duration and temperature)
Table 8-3: Package Peak Reflow Temperatures
Table 9-1: Solderability Tests for Gullwing Leaded Components, Two Sides
Table 9-2: Solderability, Bath Method: Test Severities (duration and temperature)
Table 9-3: Package Peak Reflow Temperatures
Table 10-1: Solderability Tests for J-Leaded Components, Two Sides
Table 10-2: Solderability, Bath Method: Test Severities (duration and temperature)
Table 10-3: Package Peak Reflow Temperatures
Table 11-1: Solderability Tests for Gullwing Components, Four Sides
Table 11-2: Solderability, Bath Method: Test Severities (duration and temperature)
Table 11-3: Package Peak Reflow Temperatures
Table 12-1: Solderability Tests for J-Leaded Components, Four Sides
Table 12-2: Solderability, Bath Method: Test Severities (duration and temperature)
Table 12-3: Package Peak Reflow Temperatures
Table 13-1: Solderability Tests for Post (DIP) Leads, Two Sides
Table 13-2: Solderability, Bath Method: Test Severities (duration and temperature)
Table 13-3: Package Peak Reflow Temperatures
Table 14-1: Solderability Tests for Discrete Components
Table 14-2: Package Peak Reflow Temperatures
Table 14-3: JEDEC Standard JEP95Allowable Ball Diameter Variations for FBGA (mm)
Table 14-4: Ball Diameter Sizes (mm)
Table 14-5: Land Approximation (mm) for Collapsible Solder Balls
Table 14-6: Land Approximation (mm) for Non-Collapsible Solder Balls
Table 14-7: BGA Variation Attributes (mm)
Table 14-8: Land-to-Ball Calculations for Current and Future BGA Packages (mm)
Table 15-1: Solderability Tests for No Lead Components
Table 15-2: Solderability, Bath Method: Test Severities (duration and temperature)
Table 15-3: Package Peak Reflow Temperatures
Generic Requirements for Surface Mount Design and Land Pattern Standard

1 SCOPE

This document provides generic requirements on land pattern geometries used for the surface attachment of electronic components, as well as surface mount design recommendations for achieving the best possible solder joints to the devices assembled.

1.1 Purpose The intent of the information presented herein is to provide the appropriate size, shape and tolerance of surface mount land patterns to insure sufficient area for the appropriate solder fillet to meet the requirements of IPC J-STD-001, and also to allow for inspection, testing, and rework of those solder joints. Designers can use the information contained herein to establish standard land pattern geometries not only for manual designs but also for computer-aided design systems. Whether parts are mounted on one or both sides of the printed board, subjected to wave, reflow, or other type of soldering, the land pattern and part dimensions should be optimized to insure proper solder joint and inspection criteria.

Land patterns become a part of the printed board circuitry and they are subject to the producibility levels and tolerances associated with fabrication and assembly processes. The producibility aspects also pertain to the use of solder mask and the registration required between the solder mask and the conductor patterns.

In addition to the land pattern geometries required for proper solder joint formation, other mounting conditions must be considered, such as solder mask clearance, solder paste stencil aperture sizes, clearance between adjacent components, clearance between the bottom of the component and the printed board surface (if relevant), keep-out areas (if relevant), and suitable rules for adhesive applications. These additional features become part of the overall land pattern standard for each component type.

Note 1: The dimensions used for component descriptions have been extracted from standards listed in Section 2. Designers should refer to the manufacturer’s data sheet for specific component package dimensions.

Caution: Users should be aware that individual component data sheets may not meet standardized component outlines (e.g., JEDEC standard component outlines).

Note 2: Elements of the mounting conditions, particularly the courtyard, given in this standard are related to the reflow soldering process. Adjustments for wave or other soldering processes, if applicable, have to be carried out by the user. This may also be relevant when solder alloys other than eutectic tin lead solders are used.

Note 3: This standard assumes that even under worst case tolerance conditions the opportunity for an acceptable solder fillet will be maintained.

Note 4: Heat dissipation aspects have not been taken into account in this standard. Greater mass may require slower process speed to allow heat transfer.

Note 5: For surface mount components, the solder joints provide not only the electrical connection, but the mechanical support as well. Heavier components (greater weight per land) require larger lands; thus, adding additional land pattern surface will increase surface area of molten solder to enhance capabilities of extra weight. In some cases the lands shown in this standard may not apply for a particular application and may need to be increased in a land pattern library; in these cases, considering additional measures may be necessary.

1.2 Documentation Hierarchy This standard identifies the generic physical design principles involved in the creation of land patterns for surface mount components, and is supplemented by a shareware IPC-7351 Land Pattern Calculator that provides, through the use of a graphical user interface, the individual component dimensions and corresponding land pattern recommendations based upon families of components. The IPC-7351 Land Pattern Calculator is provided on CD-ROM as part of this standard. Updates to land pattern dimensions, including patterns for new component families, can be found on the IPC website (www.ipc.org) under the “Knowledge” menu, within “PCB Tools and Calculators.” See Appendix B for more information on the IPC-7351 Land Pattern Calculator.