Generic Requirements for Surface Mount Design and Land Pattern Standard

Developed by the Surface Mount Land Patterns Subcommittee (1-13) of the Printed Board Design Committee (1-10) of IPC

Supersedes:
IPC-7351 - February 2005
IPC-SM-782A with Amendments 1 & 2 - December 1999

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 SCOPE ... 1
 1.1 Purpose ... 1
 1.2 Documentation Hierarchy 1
 1.2.1 Component and Land Pattern Family Structure 1
 1.3 Performance Classification 2
 1.3.1 Productibility Levels 2
 1.4 Land Pattern Determination 2
 1.5 Terms and Definitions 3
 1.6 Revision Level Changes 5

2 APPLICABLE DOCUMENTS ... 5
 2.1 IPC ... 5
 2.2 Electronic Industries Association 6
 2.3 Joint Industry Standards (IPC) 6
 2.4 International Electrotechnical Commission 6
 2.5 Joint Electron Device Engineering Council (JEDEC) ... 6

3 DESIGN REQUIREMENTS .. 6
 3.1 Dimensioning Systems 6
 3.1.1 Component Tolerancing 6
 3.1.2 Land Tolerancing 9
 3.1.3 Fabrication Allowances 10
 3.1.4 Assembly Tolerancing 10
 3.2 Design Productibility 20
 3.2.1 SMT Land Pattern 20
 3.2.2 Standard Component Selection 20
 3.2.3 Circuit Substrate Development 20
 3.2.4 Assembly Considerations 20
 3.2.5 Provision for Automated Test 20
 3.2.6 Documentation for SMT 20
 3.3 Environmental Constraints 20
 3.3.1 Moisture Sensitive Components 20
 3.3.2 End-Use Environment Considerations 20
 3.4 Design Rules ... 22
 3.4.1 Component Spacing 22
 3.4.2 Single-and Double-Sided Board Assembly 22
 3.4.3 Component Stand-Off Height for Cleaning 24
 3.4.4 Fiducial Marks .. 24
 3.4.5 Conductors .. 26
 3.4.6 Via Guidelines .. 26
 3.4.7 Standard Printed Board Fabrication Allowances 29
 3.4.8 Panelization ... 31

3.5 Outer Layer Surface Finishes 32
 3.5.1 Solder Mask Finishes 32
 3.5.2 Solder Mask Clearances 32
 3.5.3 Land Pattern Surface Finishes 34

4 COMPONENT QUALITY VALIDATION 36
 4.1 Validation Techniques 36

5 TESTABILITY ... 37
 5.1 Board and Assembly Test 37
 5.1.1 Bare-Board Test .. 37
 5.1.2 Assembled Board Test 37
 5.2 Nodal Access ... 37
 5.2.1 Test Philosophy .. 37
 5.2.2 Test Strategy for Bare Boards 38
 5.3 Full Nodal Access for Assembled Board 38
 5.3.1 In-Circuit Test Accommodation 39
 5.3.2 Multi-Probe Testing 39
 5.4 Limited Nodal Access 39
 5.5 No Nodal Access .. 39
 5.6 Clam-Shell Fixtures Impact 39
 5.7 Printed Board Test Characteristics 39
 5.7.1 Test Land Pattern Spacing 39
 5.7.2 Test Land Size and Shape 39
 5.7.3 Design for Test Parameters 39

6 PRINTED BOARD STRUCTURE TYPES 41
 6.1 General Considerations 41
 6.1.1 Categories ... 41
 6.1.2 Thermal Expansion Mismatch 41
 6.2 Organic-Base Material 41
 6.3 Nonorganic Base Materials 41
 6.4 Alternative Printed Board Structures 41
 6.4.1 Supporting-Plane Printed Board Structures 41
 6.4.2 High-Density Printed Board Technology 41
 6.4.3 Constraining Core Structures 41
 6.4.4 Porcelainized Metal (Metal Core) Structures 41

7 ASSEMBLY CONSIDERATION FOR SURFACE MOUNT TECHNOLOGY (SMT) 44
 7.1 SMT Assembly Process Sequence 44
 7.2 Substrate Preparation 44
 7.2.1 Adhesive Application 44
 7.2.2 Conductive Adhesive 44
 7.2.3 Solder Paste Application 45
 7.2.4 Solder Preforms 45
8 IPC-7352 DISCRETE COMPONENTS

8.1 Chip Resistors (RESC) ... 49
 8.1.1 Basic Construction ... 49
 8.1.2 Marking .. 49
 8.1.3 Carrier Package .. 49
 8.1.4 Resistance to Soldering Process
 Temperatures .. 49
8.2 Chip Capacitors (CAPC) ... 50
 8.2.1 Basic Construction ... 50
 8.2.2 Marking .. 50
 8.2.3 Carrier Package .. 50
 8.2.4 Resistance to Soldering Process
 Temperatures .. 50
8.3 Inductors (INDC, INDM, INDP) 51
 8.3.1 Basic Construction ... 51
 8.3.2 Marking .. 51
 8.3.3 Carrier Package Format 51
 8.3.4 Resistance to Soldering Process
 Temperatures .. 51
8.4 Tantalum Capacitors (CAPT) 51
 8.4.1 Basic Construction ... 51
 8.4.2 Marking .. 51
 8.4.3 Carrier Package Format 51
 8.4.4 Resistance to Soldering Process
 Temperatures .. 51
8.5 Metal Electrode Face Diodes (DIOMELF, RESMELF) 52
 8.5.1 Basic Construction ... 52
 8.5.2 Marking .. 52
 8.5.3 Carrier Package Format 52
8.6 SOT23 .. 53
 8.6.1 Basic Construction ... 53
 8.6.2 Marking .. 53
 8.6.3 Carrier Package Format 53
 8.6.4 Resistance to Soldering Process
 Temperatures .. 53
8.7 SOT89 .. 53
 8.7.1 Basic Construction ... 53
 8.7.2 Marking .. 53
 8.7.3 Carrier Package Format 53
 8.7.4 Resistance to Soldering Process
 Temperatures .. 53
8.8 SOD123 .. 53
 8.8.1 Basic Construction ... 53
 8.8.2 Marking .. 53
 8.8.3 Carrier Package Format 53
 8.8.4 Resistance to Soldering Process
 Temperatures .. 53
8.9 SOT143 .. 53
 8.9.1 Basic Construction ... 53
 8.9.2 Marking .. 53
 8.9.3 Carrier Package Format 53
 8.9.4 Resistance to Soldering Process
 Temperatures .. 53
8.10 SOT223 ... 54
 8.10.1 Basic Construction ... 54
 8.10.2 Marking .. 54
 8.10.3 Carrier Package Format 54
 8.10.4 Resistance to Soldering Process
 Temperatures .. 54
8.11 TO252 (DPAK Type) .. 54
 8.11.1 Basic Construction ... 54
 8.11.2 Marking .. 54
 8.11.3 Carrier Package Format 54
 8.11.4 Resistance to Soldering Process
 Temperatures .. 54
9 IPC-7353 GULLWING LEADED COMPONENTS,
 TWO SIDES ..
 9.1 SOIC .. 55
 9.1.1 Basic Construction ... 55
 9.1.2 Marking .. 55
 9.1.3 Carrier Package Format 55
 9.1.4 Resistance to Soldering Process
 Temperatures .. 55
 9.2 SOP8/SOP63 (SSOIC) .. 56
 9.2.1 Basic Construction ... 56
9.2.2 Marking ... 56
9.2.3 Carrier Package Format 56
9.2.4 Resistance to Soldering Process Temperatures 56
9.3 SOP127 (SOP-IPC-782) ... 56
9.3.1 Marking .. 57
9.3.2 Carrier Package Format 57
9.3.3 Resistance to Soldering Process Temperatures 57
9.4 TSSOPs .. 57
9.4.1 Marking .. 57
9.4.2 Carrier Packages Format 57
9.4.3 Resistance to Soldering Process Temperatures 57
9.5 CFP127 .. 57
9.5.1 Marking .. 58
9.5.2 Carrier Packages Format 58
9.5.3 Resistance to Soldering Process Temperatures 58

10 IPC-7354 J-LEADED COMPONENTS, TWO SIDES 58
10.1 Basic Construction .. 58
10.2 Marking .. 58
10.3 Carrier Package Format .. 58
10.4 Process Considerations ... 59

11 IPC-7355 GULL-WING LEADED COMPONENTS, FOUR SIDES 60
11.1 BQFP (PQFP) .. 61
11.1.1 Carrier Package Format 61
11.2 SQFP/QFP .. 61
11.2.1 Carrier Package Format 61
11.3 QFPR ... 61
11.3.1 Carrier Package Format 61
11.4 CQFP ... 61
11.4.1 Carrier Package Format 62

12 IPC-7356 J LEADED COMPONENTS, FOUR SIDES 62
12.1 PLCC .. 63
12.1.1 Premolded Plastic Chip Carriers 63
12.1.2 Postmolded Plastic Chip Carriers 63
12.2 PLCCR ... 64
12.2.1 Premolded Plastic Chip Carriers 64
12.2.2 Postmolded Plastic Chip Carriers 64

13 IPC-7357 POST (DIP) LEADS, TWO SIDES 64
13.1 Termination Materials .. 64
13.2 Marking .. 65
13.3 Carrier Package Format .. 66
13.4 Resistance to Soldering Process Temperatures 66

14 IPC-7358 AREA ARRAY COMPONENTS (BGA, FBGA, CGA, LGA, Chip Array) 66
14.1 Area Array Configurations 66
14.1.1 BGA Packages ... 66
14.1.2 Fine Pitch BGA Package (FBGA) 67
14.1.3 Ceramic Column Grid Arrays (CGA) 68
14.1.4 Plastic Land Grid Arrays (LGA) 68
14.2 General Configuration Issues 68
14.2.1 Device Outlines .. 68
14.2.2 Contact Matrix Options 68
14.2.3 Selective Depopulation 69
14.2.4 Attachment Site Planning 69
14.2.5 Defining Contact Assignment 70
14.3 Handling and Shipping ... 70
14.4 Land Pattern Analysis .. 70
14.4.1 Land Approximation ... 71
14.4.2 Total Variation ... 72
14.4.3 Land Pattern Calculator 72
14.5 Chip Array Component Lead Packages 72
14.5.1 Concave Chip Array Packages 72
14.5.2 Convex Chip Array Packages 72
14.5.3 Flat Chip Array Packages 73

15 IPC-7359 NO LEAD COMPONENTS (QFN, PQFN, PSON, LCC) 74
15.1 LCC ... 74
15.1.1 Marking .. 74
15.1.2 Carrier Package Format 74
15.1.3 Process Considerations 74
15.2 Quad Flat No-Lead (QFN) 74
15.2.1 Marking .. 76
15.2.2 Carrier Package Format 76
15.2.3 Process Considerations 76
15.2.4 Solder Mask Considerations 76
15.3 Small Outline No-Lead (SON) 76
15.3.1 Marking .. 76
15.3.2 Carrier Package Format 77
15.3.3 Process Considerations 77
15.3.4 Solder Mask Considerations 77
15.4 Small Outline and Quad Flat No Lead with Pullback Leads (PQFN, PSON) 77

16 ZERO COMPONENT ORIENTATIONS 77
Generic Requirements for Surface Mount Design and Land Pattern Standard

1 SCOPE
This document provides information on land pattern geometries used for the surface attachment of electronic components. The intent of the information presented herein is to provide the appropriate size, shape and tolerance of surface mount land patterns to insure sufficient area for the appropriate solder fillet to meet the requirements of IPC J-STD-001, and also to allow for inspection, testing, and rework of those solder joints.

1.1 Purpose Although, in many instances, the land pattern geometries can be different based on the type of soldering used to attach the electronic part, wherever possible, land patterns are defined with consideration to the attachment process being used. Designers can use the information contained herein to establish standard configurations not only for manual designs but also for computer-aided design systems. Whether parts are mounted on one or both sides of the board, subjected to wave, reflow, or other type of soldering, the land pattern and part dimensions should be optimized to insure proper solder joint and inspection criteria.

Land patterns are dimensionally defined and are a part of the printed board circuitry geometry, as they are subject to the producibility levels and tolerances associated with plating, etching, assembly or other conditions. The producibility aspects also pertain to the use of solder mask and the registration required between the solder mask and the conductor patterns.

Note 1: The dimensions used for component descriptions have been extracted from standards developed by industrial and/or standards bodies. Designers should refer to these standards for additional or specific component package dimensions.

Note 2: For a comprehensive description of the given printed board and for achieving the best possible solder joints to the devices assembled, the whole set of design elements includes, beside the land pattern definition:
- Soldermask
- Solder paste stencil
- Clearance between adjacent components
- Clearance between bottom of component and printed board surface, if relevant
- Keepout areas, if relevant
- Suitable rules for adhesive applications

The whole of design elements is commonly defined as “mounting conditions.” This standard defines land patterns and includes recommendations for clearances between adjacent components and for other design elements.

Note 3: Elements of the mounting conditions, particularly the courtyard, given in this standard are related to the reflow soldering process. Adjustments for wave or other soldering processes, if applicable, have to be carried out by the user. This may also be relevant when solder alloys other than eutectic tin lead solders are used.

Note 4: This standard assumes that the land pattern follows the principle that, even under worst case conditions, the overlap of the component termination and the corresponding soldering land will be complete.

Note 5: Heat dissipation aspects have not been taken into account in this standard. Greater mass may require slower process speed to allow heat transfer.

Note 6: Heavier components (greater weight per land) require larger lands; thus, adding additional land pattern surface will increase surface area of molten solder to enhance capabilities of extra weight. In some cases the lands shown in the standard may not be large enough; in these cases, considering additional measures may be necessary.

1.2 Documentation Hierarchy This standard identifies the generic physical design principles involved in the creation of land patterns for surface mount components, and is supplemented by a shareware IPC-7351 Land Pattern viewer that provides, through the use of a graphical user interface, the individual component dimensions and corresponding land pattern recommendations based upon families of components. The IPC-7351 Land Pattern Viewer is provided on CD-ROM as part of this standard. Updates to land pattern dimensions, including patterns for new component families, can be found on the IPC website (www.ipc.org) under “PCB Tools and Calculators.” See Appendix C for more information on the IPC-7351 Land Pattern Viewer.

1.2.1 Component and Land Pattern Family Structure The IPC-7351 provides the following number designation within this standard for each major family of surface mount components to indicate similarities in solder joint engineering goals:

- IPC-7352 – Discrete Components (CAP, RES, IND, DIO, LED)
- IPC-7353 – Gullwing Leaded Components, Two Sides (SOP, SOIC, SOD, SOT, TO)