Design and Assembly Process Implementation for Ball Grid Arrays (BGAs)

Developed by the Ball Grid Array Task Group (5-21f) of the Assembly & Joining Processes Committee (5-20) of IPC

Supersedes:
IPC-7095D-AM1 - June 2019
IPC-7095D - June 2018
IPC-7095C - January 2013
IPC-7095B - March 2008
IPC-7095A - October 2004
IPC-7095 - August 2000

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
Table of Contents

1 SCOPE .. 1
 1.1 Purpose .. 1
 1.1.1 Intent .. 1
 1.1.2 Interpretation of “Shall” 1
 1.1.3 Presentation .. 1
 1.1.4 Use of “Lead” ... 1
 1.1.5 Abbreviations and Acronyms 1

2 APPLICABLE DOCUMENTS 1
 2.1 IPC ... 1
 2.2 JEDEC .. 2
 2.3 Joint Standards .. 2
 2.4 EIA ... 3

3 SELECTION CRITERIA AND MANAGING BGA IMPLMENTATION .. 3
 3.1 Terms and Definitions .. 3
 3.1.1 Solder-Mask-Defined (SMD) BGA Pad 3
 3.1.2 Non-Solder-Mask Defined (NSMD) BGA Pad 3
 3.1.3 Nonwet Open (NWO) 3
 3.1.4 Head-on-Pillow (HoP) 3
 3.2 Overview ... 3
 3.3 Description of Assembly Infrastructure 4
 3.3.1 Land Patterns and Printed Board Considerations 4
 3.3.2 Technology Comparison 5
 3.3.3 Assembly Equipment Impact 8
 3.3.4 Stencil Requirements 8
 3.3.5 Inspection Requirements 8
 3.3.6 Test .. 8
 3.4 Time-to-Market Readiness 8
 3.5 Methodology .. 9
 3.6 Process Step Analysis 9
 3.7 BGA Limitations and Issues 9
 3.7.1 Visual Inspection .. 9
 3.7.2 Moisture Sensitivity 10
 3.7.3 BGA and Board Coplanarity and Warpage 10
 3.7.4 Rework ... 11
 3.7.5 Cost ... 11
 3.7.6 Voids in BGAs .. 11
 3.7.7 Pad Cratering ... 11
 3.7.8 Head-on-Pillow (Hop) Defect 13
 3.7.9 Nonwet Open (NWO) Defect 14
 3.7.10 Reliability Concerns 14

4 COMPONENT CONSIDERATIONS 15
 4.1 Semiconductor Packaging Comparisons and Drivers .. 15
 4.1.1 Package Feature Comparisons 15
 4.1.2 BGA Package Influencers 16
 4.1.3 Cost Concerns ... 16
 4.1.4 Component Handling 16
 4.1.5 Thermal Performance 18
 4.1.6 Spatial Constraint .. 18
 4.1.7 Electrical Performance 18
 4.1.8 Mechanical Performance 18
 4.2 Die Mounting in the BGA Package 19
 4.2.1 Wire Bonding .. 19
 4.2.2 Flip Chip ... 20
 4.2.3 Changing BGA Termination Materials 20
 4.2.4 Options for Nonreballed BGAs 21
 4.3 Standardization .. 22
 4.3.1 Industry Standards for BGAs 22
 4.3.2 BGA Package Pitch 24
 4.3.3 BGA Package Outline 25
 4.3.4 Ball Size Relationships 25
 4.3.5 Package-on-Package (PoP) BGA 26
 4.3.6 Coplanarity ... 26
 4.4 Component Packaging Style Considerations 26
 4.4.1 Solder Ball Alloys .. 27
 4.4.2 Ball Attach Process 30
 4.4.3 Ceramic Ball Grid Array (CBGA) 30
 4.4.4 Ceramic Column Grid Arrays (CCGAs) 31
 4.4.5 Tape-Based Ball Grid Arrays (TBGAs) 35
 4.4.6 Multiple-Die Packaging 35
 4.4.7 System-in-Package (SiP) 36
 4.4.8 Three-Dimensional (3D) Folded Package Technology .. 36
 4.4.9 Ball Stack .. 36
 4.4.10 Folded and Stacked Packaging Combination 37
 4.4.11 Package-on-Package (PoP) 37
 4.4.12 Benefits of Multiple-Die Packaging 37
 4.5 BGA Connectors and Sockets 38
 4.5.1 Material Considerations for BGA Connectors ... 38
 4.5.2 Attachment Considerations for BGA Connectors 38
 4.5.3 BGA Materials and Socket Types 39
 4.5.4 Attachment Considerations for BGA Sockets ... 39
Table 4-10 IPC-4101 FR-4 Property Summaries – Illustrations of Specification Sheets of Materials Projected to Better Withstand Pb-free Assembly

Table 4-9 Column Grid Array (CGA) Alloy and Construction Styles

Table 4-8 Column Grid Array (CGA) Land Size Approximation

Table 4-7 Pb-Free Alloy Variations

Table 4-6 Examples of JEDEC-Registered BGA Packages (mm)

Table 4-5 Land-to-Ball Calculations for BGA Packages (mm)

Table 4-4 Land Pattern Design

Table 4-3 Ball Diameter Sizes for Die-Size BGAs (DSBGAs)

Table 4-2 Ball Diameter Sizes for Plastic BGAs (PBGAs)

Table 4-1 JEDEC Standard JEP95-1/5 Allowable Ball Diameter Variations for FBGA

Table 3-3 List of IPC Standards Related to Pad Cratering

Table 3-2 Number of Conductors vs. Array Size on Two Layers of Circuitry

Table 3-1 Multichip Module (MCM) Definitions

Tables

Table 7-1 Solder Ball Size Distribution by Type and Mesh

Table 7-2 Recommendations for Solder Powder Type for Different Pitches to Achieve Good Solder Paste Release (S/P Ratio > 4.2)

Table 7-3 Stencil Thicknesses Per BGA Pitch

Table 7-4 Pros and Cons of Common Stencil Technologies and Options

Table 7-5 Fine-Pitch BGA (FBGA) Printing Options

Table 7-6 Example of Solder Paste Volume Requirements for Ceramic Array Packages

Table 7-7 Profile Comparison Between SnPb and SAC Alloys

Table 7-8 Inspection Usage Application Recommendations

Table 7-9 Field of View for Inspection

Table 7-10 Void Classification

Table 7-11 Examples of Suggested Void Protocols

Table 7-12 Ball-to-Void Size Image – Comparisons for Various Ball Diameters

Table 7-13 Repair Process Temperature Profiles for SnPb Assembly

Table 7-14 Repair Process Temperature Profiles for Pb-Free Assemblies

Figure 9-7 Uneven and Missing Solder Balls

Figure 9-8 Eggshell Void

Figure 9-9 Convex (Frowning) BGA With Bridging at Corners

Figure 9-10 Solder Joint Opens Due to Interposer Warpage

Figure 9-11 Target Solder Condition

Figure 9-12 Solder Balls with Excessive Oxide

Figure 9-13 Dewetting of Solder at Interface

Figure 9-14 Nonwetting

Figure 9-15 Incomplete Joining Due to Land Contamination

Figure 9-16 Solder Ball Deformation

Figure 9-17 Column-Shaped Ball Deformation

Figure 9-18 Suspended Solder Ball

Figure 9-19 Extended and Proper Solder Connections on the Same BGA

Figure 9-20 Solder Bridging

Figure 9-21 Incomplete Solder Reflow

Figure 9-22 Missing Solder Paste Deposit

Figure 9-23 Nonwet Open (NWO)

Figure 9-24 Head-on-Pillow (HoP)

Figure A-1 Typical Flow Diagram for Void Assessment

Figure A-2 Voids in BGAs With Crack Started at Corner Lead

Figure A-3 Void Diameter Related to Land Size

Figure 9-1 Typical Flow Diagram for Void Assessment

Figure 7-10 Emissivity Ratings for Certain Materials

Figure 6-9 Effects of Material Type on Conduction

Figure 6-8 Conductor and Space Width for Different Array Pitches

Figure 6-7 Uneven and Missing Solder Balls

Figure 6-6 Maximum Solder Land to Pitch Relationship (mm)

Figure 6-5 Number of Conductors Between Solder Lands – 0.30-mm-Pitch BGA (0.50-mm Ball Diameter)

Figure 6-4 Number of Conductors Between Solder Lands – 0.40-mm-Pitch BGA (0.65-mm Ball Diameter)

Figure 6-3 Number of Conductors Between Solder Lands – 0.80-mm-Pitch BGA (0.50-mm Ball Diameter)

Figure 6-2 Number of Conductors Between Solder Lands – 1-mm-Pitch BGA (0.60-mm Ball Diameter)

Figure 6-1 Number of Conductors Between Solder Lands – 1.27-mm-Pitch BGA (0.75-mm Ball Diameter)

Figure 5-2 Evaluation Via Filling/Encroachment Based on Surface Finish Process

Figure 5-3 Via Fill Options

Figure 5-1 Key Attributes for Various Printed Board Surface Finishes

Figure 4-11 Typical Properties of Common Dielectric Materials for BGA Package Substrates

Figure 4-10 Typical Properties of Common Dielectric Materials for BGA Package Substrates

Figure 4-9 Typical Properties of Common Dielectric Materials for BGA Package Substrates

Figure 4-8 Typical Properties of Common Dielectric Materials for BGA Package Substrates

Figure 4-7 Typical Properties of Common Dielectric Materials for BGA Package Substrates
Table 8-1 Typical Stand-Off Heights for BGAs 157
Table 8-2 Melting Points, Advantages and
Disadvantages of Common Solder
Alloys ... 159
Table 8-3 Types of Pb-free Assemblies 161
Table A-1 Corrective Action Indicator for Lands Used
With 1-mm, 1.27-mm and 1.5-mm Pitch 181
Table A-2 Corrective Action Indicator for Lands Used
With 0.5-mm, 0.65-mm or 0.8-mm Pitch 182
Table A-3 Corrective Action Indicator for Microvia-in-
Pad Lands Used With 0.3-mm, 0.4-mm or
0.5-mm Pitch .. 183
Design and Assembly Process Implementation for Ball Grid Arrays (BGAs)

1 SCOPE
This standard describes design and assembly implementation for ball grid array (BGA) and fine-pitch BGA (FBGA) technology, focusing on inspection, repair and reliability issues associated with design and assembly of printed boards using these packages.

1.1 Purpose The purpose of this standard is to provide useful and practical information to those who use or are considering using BGAs. The target audiences for this document are managers, designers and process engineers who are responsible for design, assembly, inspection and repair processes of printed boards and printed board assemblies.

1.1.1 Intent This document describes how to successfully implement robust design and assembly processes for printed board assemblies using BGAs as well as ways to troubleshoot some common anomalies which can occur during BGA assembly. For accept/reject criteria and requirements for BGA assemblies, see J-STD-001 and IPC-A-610.

1.1.2 Interpretation of “Shall” The imperative form of the verb “shall” is used throughout this standard whenever a requirement is intended to express a provision that is mandatory. Deviation from a “shall” requirement may be considered if sufficient data are supplied to justify the exception. To assist the reader, the word “shall” is presented in bold characters. The words “should” and “may” are used whenever it is necessary to express nonmandatory provisions. “Will” is used to express a declaration of purpose.

1.1.3 Presentation All dimensions and tolerances in this specification are expressed in hard SI (metric) units and bracketed soft imperial [inch] units. Users of this specification are expected to use metric dimensions. All dimensions ≥ 1 mm [0.0394 in] will be expressed in millimeters and inches. All dimensions < 1 mm [0.0394 in] will be expressed in micrometers and microinches.

1.1.4 Use of “Lead” For readability and translation, this document uses the word lead only to describe leads of a component (sometimes referred to as terminations).

1.1.5 Abbreviations and Acronyms Periodic table elements are abbreviated in this standard. See Appendix B for full spellings of abbreviations (including elements) and acronyms used in this standard.

2 APPLICABLE DOCUMENTS

2.1 IPC
IPC-T-50 Terms and Definitions for Printed Boards and Printed Board Assemblies
IPC-D-279 Design Guidelines for Reliable Surface Mount Technology Printed Board Assemblies
IPC-A-610 Acceptability of Electronic Assemblies
IPC-TM-650 Test Methods Manual2
2.4.42 Torsional Strength of Chip Adhesives
IPC-SM-785 Guidelines for Accelerated Reliability Testing of Surface Mount Attachments
IPC-SM-817 General Requirements for Dielectric Surface Mounting Adhesives
IPC-CC-830 Qualification and Performance of Electrical Insulating Compound for Printed Wiring Assemblies
IPC-HDBK-830 Guidelines for Design, Selection and Application of Conformal Coatings
IPC-1401 Corporate Social Responsibility and Sustainability Protocols for Electronic Manufacturing Industry
IPC-1601 Printed Board Handling and Storage Guidelines
IPC-1751 Generic Requirements for Declaration Process Management

1. www.ipc.org
2. Current and revised IPC Test Methods are available on the IPC Web site (www.ipc.org/test-methods.aspx)