Design and Assembly Process Implementation for BGAs

Developed by the IPC Ball Grid Array Task Group (5-21f) of the Assembly & Joining Processes Committee (5-20) of IPC

Supersedes:
IPC-7095B - March 2008
IPC-7095A - October 2004
IPC-7095 - August 2000

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SCOPE</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Purpose</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Intent</td>
<td>1</td>
</tr>
<tr>
<td>2 APPLICABLE DOCUMENTS</td>
<td>1</td>
</tr>
<tr>
<td>2.1 IPC</td>
<td>1</td>
</tr>
<tr>
<td>2.2 JEDEC</td>
<td>2</td>
</tr>
<tr>
<td>3 SELECTION CRITERIA AND MANAGING BGA IMPLEMENTATION</td>
<td>2</td>
</tr>
<tr>
<td>3.1 Description of Infrastructure</td>
<td>3</td>
</tr>
<tr>
<td>3.1.1 Land Patterns and Circuit Board Considerations</td>
<td>3</td>
</tr>
<tr>
<td>3.1.2 Technology Comparison</td>
<td>5</td>
</tr>
<tr>
<td>3.1.3 Assembly Equipment Impact</td>
<td>8</td>
</tr>
<tr>
<td>3.1.4 Stencil Requirements</td>
<td>8</td>
</tr>
<tr>
<td>3.1.5 Inspection Requirements</td>
<td>9</td>
</tr>
<tr>
<td>3.1.6 Test</td>
<td>9</td>
</tr>
<tr>
<td>3.2 Time-to-Market Readiness</td>
<td>9</td>
</tr>
<tr>
<td>3.3 Methodology</td>
<td>9</td>
</tr>
<tr>
<td>3.4 Process Step Analysis</td>
<td>9</td>
</tr>
<tr>
<td>3.5 BGA Limitations and Issues</td>
<td>9</td>
</tr>
<tr>
<td>3.5.1 Visual Inspection</td>
<td>10</td>
</tr>
<tr>
<td>3.5.2 Moisture Sensitivity</td>
<td>10</td>
</tr>
<tr>
<td>3.5.3 Thermally Unbalanced BGA Design</td>
<td>10</td>
</tr>
<tr>
<td>3.5.4 Rework</td>
<td>11</td>
</tr>
<tr>
<td>3.5.5 Cost</td>
<td>11</td>
</tr>
<tr>
<td>3.5.6 Availability</td>
<td>12</td>
</tr>
<tr>
<td>3.5.7 Voids in BGA</td>
<td>12</td>
</tr>
<tr>
<td>3.5.8 Pad Cratering</td>
<td>12</td>
</tr>
<tr>
<td>3.5.9 Standardization Issues</td>
<td>12</td>
</tr>
<tr>
<td>3.5.10 Reliability Concerns</td>
<td>13</td>
</tr>
<tr>
<td>3.5.11 Drivers for Lead-Free Technology</td>
<td>14</td>
</tr>
<tr>
<td>4 COMPONENT CONSIDERATIONS</td>
<td>14</td>
</tr>
<tr>
<td>4.1 Semiconductor Packaging Comparisons and Drivers</td>
<td>14</td>
</tr>
<tr>
<td>4.1.1 Package Feature Comparisons</td>
<td>14</td>
</tr>
<tr>
<td>4.1.2 BGA Package Drivers</td>
<td>15</td>
</tr>
<tr>
<td>4.1.3 Cost Issues</td>
<td>15</td>
</tr>
<tr>
<td>4.1.4 Component Handling</td>
<td>15</td>
</tr>
<tr>
<td>4.1.5 Thermal Performance</td>
<td>17</td>
</tr>
<tr>
<td>4.1.6 Real Estate</td>
<td>17</td>
</tr>
<tr>
<td>4.1.7 Electrical Performance</td>
<td>17</td>
</tr>
<tr>
<td>4.1.8 Mechanical Performance</td>
<td>17</td>
</tr>
<tr>
<td>4.2 Die Mounting in the BGA Package</td>
<td>17</td>
</tr>
<tr>
<td>4.2.1 Wire Bond</td>
<td>18</td>
</tr>
<tr>
<td>4.2.2 Flip Chip</td>
<td>19</td>
</tr>
<tr>
<td>4.3 Standardization</td>
<td>19</td>
</tr>
<tr>
<td>4.3.1 Industry Standards for BGA</td>
<td>19</td>
</tr>
<tr>
<td>4.3.2 Ball Pitch</td>
<td>20</td>
</tr>
<tr>
<td>4.3.3 BGA Package Outline</td>
<td>21</td>
</tr>
<tr>
<td>4.3.4 Ball Size Relationships</td>
<td>21</td>
</tr>
<tr>
<td>4.3.5 Package-on-Package BGA</td>
<td>22</td>
</tr>
<tr>
<td>4.3.6 Coplanarity</td>
<td>22</td>
</tr>
<tr>
<td>4.4 Component Packaging Style Considerations</td>
<td>23</td>
</tr>
<tr>
<td>4.4.1 Solder Ball Alloy</td>
<td>23</td>
</tr>
<tr>
<td>4.4.2 Ball Attach Process</td>
<td>24</td>
</tr>
<tr>
<td>4.4.3 Ceramic Ball Grid Array</td>
<td>24</td>
</tr>
<tr>
<td>4.4.4 Ceramic Column Grid Arrays</td>
<td>25</td>
</tr>
<tr>
<td>4.4.5 Tape Ball Grid Arrays</td>
<td>25</td>
</tr>
<tr>
<td>4.4.6 Multiple Die Packaging</td>
<td>25</td>
</tr>
<tr>
<td>4.4.7 System-in-Package (SiP)</td>
<td>26</td>
</tr>
<tr>
<td>4.4.8 3D Folded Package Technology</td>
<td>27</td>
</tr>
<tr>
<td>4.4.9 Ball Stack, Package-on-Package</td>
<td>27</td>
</tr>
<tr>
<td>4.4.10 Folded and Stacked Packaging Combination</td>
<td>28</td>
</tr>
<tr>
<td>4.4.11 Package-on-Package</td>
<td>28</td>
</tr>
<tr>
<td>4.4.12 Benefits of Multiple Die Packaging</td>
<td>28</td>
</tr>
<tr>
<td>4.4.13 Solutions for Very Fine Pitch Array</td>
<td>28</td>
</tr>
<tr>
<td>4.5 BGA Connectors and Sockets</td>
<td>29</td>
</tr>
<tr>
<td>4.5.1 Material Considerations for BGA Connectors</td>
<td>29</td>
</tr>
<tr>
<td>4.5.2 Attachment Considerations for BGA Connectors</td>
<td>29</td>
</tr>
<tr>
<td>4.5.3 BGA Materials and Socket Types</td>
<td>30</td>
</tr>
<tr>
<td>4.5.4 Attachment Considerations for BGA Sockets</td>
<td>30</td>
</tr>
<tr>
<td>4.6 BGA Construction Materials</td>
<td>31</td>
</tr>
<tr>
<td>4.6.1 Types of Substrate Materials</td>
<td>31</td>
</tr>
<tr>
<td>4.6.2 Properties of Substrate Materials</td>
<td>33</td>
</tr>
<tr>
<td>4.7 BGA Package Design Considerations</td>
<td>33</td>
</tr>
<tr>
<td>4.7.1 Power and Ground Planes</td>
<td>33</td>
</tr>
<tr>
<td>4.7.2 Signal Integrity</td>
<td>34</td>
</tr>
<tr>
<td>4.7.3 Heat Spreader Incorporation Inside the Package</td>
<td>34</td>
</tr>
<tr>
<td>4.8 BGA Package Acceptance Criteria and Shipping Format</td>
<td>34</td>
</tr>
<tr>
<td>4.8.1 Missing Balls</td>
<td>34</td>
</tr>
<tr>
<td>4.8.2 Voids in Solder Balls</td>
<td>34</td>
</tr>
</tbody>
</table>
5 PRINTED BOARDS AND OTHER MOUNTING STRUCTURES ... 37
5.1 Types of Mounting Structures .. 37
 5.1.1 Organic Resin Systems .. 37
 5.1.2 Inorganic Structures .. 37
 5.1.3 Layering (Multilayer, Sequential or Build-Up) 37
5.2 Properties of Mounting Structures ... 37
 5.2.1 Resin Systems .. 37
 5.2.2 Reinforcements .. 38
 5.2.3 Laminate Material Properties .. 39
5.3 Surface Finishes .. 40
 5.3.1 Hot Air Solder Leveling (HASL) ... 41
 5.3.2 Organic Surface Protection (Organic Solderability Preservative) OSP Coatings .. 42
 5.3.3 Noble Platings/Coatings .. 42
5.4 Solder Mask ... 46
 5.4.1 Wet and Dry Film Solder Masks .. 46
 5.4.2 Photoimageable Solder Masks .. 47
 5.4.3 Jettable Solder Mask .. 47
 5.4.4 Registration of Board to Panel Image for Solder Mask 47
5.4.5 Via Protection .. 47
5.5 Thermal Spreader Structure Incorporation (e.g., Metal Core Boards) 48
 5.5.1 Lamination Sequences .. 48
 5.5.2 Heat Transfer Pathway .. 48
6 PRINTED CIRCUIT ASSEMBLY DESIGN CONSIDERATION ... 50
6.1 Component Placement and Clearances .. 50
 6.1.1 Pick and Place Requirements ... 50
 6.1.2 Repair/Rework Requirements .. 50
 6.1.3 Global Placement .. 51
 6.1.4 Alignment Legends (Silkscreen, Copper Features, Pin 1 Identifier) .. 51
6.2 Attachment Sites (Land Patterns and Vias) ... 52
 6.2.1 Big vs. Small Land and Impact on Routing 52
 6.2.2 Solder Mask vs. Metal Defined Land Design 52
 6.2.3 Conductor Width ... 53
 6.2.4 Via Size and Location .. 54
6.3 Escape and Conductor Routing Strategies ... 54
 6.3.1 Escape Strategies .. 57
 6.3.2 Surface Conductor Details ... 58
 6.3.3 Dog Bone Through Via Details .. 58
 6.3.4 Design for Mechanical Strain ... 58
 6.3.5 Uncapped Via-in-Pad and Impact on Reliability Issues 59
6.4 Impact of Wave Solder on Top Side BGAs .. 61
 6.4.1 Top Side Reflow .. 61
 6.4.2 Impact of Top Side Reflow ... 61
 6.4.3 Methods of Avoiding Top Side Reflow .. 62
 6.4.4 Top Side Reflow for Lead-Free Boards .. 64
6.5 Testability and Test Point Access .. 64
 6.5.1 Component Testing .. 64
 6.5.2 Damage to the Solder Balls During Test and Burn-In 64
6.6 Other Design for Manufacturability Issues .. 68
 6.6.1 Panel/Pallet Design .. 68
 6.6.2 In-Process/End Product Test Coupons .. 68
6.7 Thermal Management .. 69
 6.7.1 Conduction .. 70
 6.7.2 Radiation .. 70
 6.7.3 Convection .. 70
 6.7.4 Thermal Interface Materials ... 71
6.8 Heat Sink Attachment Methods for BGAs .. 72
 6.8.1 Drawing Requirements ... 74
 6.8.2 Equipment Messaging Protocols .. 74
 6.8.3 Specifications .. 75
7 ASSEMBLY OF BGAS ON PRINTED CIRCUIT BOARDS ... 76
 7.1 SMT Assembly Processes .. 76
 7.1.1 Solder Paste and Its Application .. 76
 7.1.2 Component Placement Impact ... 78
 7.1.3 Vision Systems for Placement ... 78
 7.1.4 Reflow Soldering and Profiling .. 79
 7.1.5 Material Issues ... 84
 7.1.6 Vapor Phase ... 84
 7.1.7 Cleaning vs. No-Clean ... 84
 7.1.8 Package Standoff .. 85
 7.2 Post-SMT Processes .. 86
 7.2.1 Conformal Coatings ... 86
Figure 3-6 Plastic Ball Grid Array, Chip Wire Bonded 8
Figure 3-7 Ball Grid Array, Flip Chip Bonded 8
Figure 3-8 BGA Warpage ... 11
Figure 3-9 Examples of Pad Cratering 13
Figure 3-10 Various Possible Failure Modes for a BGA Solder Joint ... 13
Figure 4-1 Termination Types for Area Array Packages 16
Figure 4-2 BOC BGA Construction 18
Figure 4-3 Top of Molded BOC Type BGA 18
Figure 4-4 Flip-Chip (Bumped Die) on BGA Substrate ... 19
Figure 4-5 JEDEC Standard Format for Package-on- Package Components ... 22
Figure 4-6 Polymer Coated Sphere Interconnection 23
Figure 4-7 Plastic Ball Grid Array (BGA) Package 24
Figure 4-8 Cross-Section of a Thermally Enhanced Ceramic Ball Grid Array (CBGA) Package 25
Figure 4-9 Ceramic Ball Grid Array (CBGA) Package with Molded Polymer Encapsulation 25
Figure 4-10 Ceramic-Based Column Grid Array (CCGA) Package ... 26
Figure 4-11 Polyimide Film-Based Lead-Bond µBGA Package Substrate Furnishes Close Coupling Between Die Pad and Ball Contact ... 26
Figure 4-12 Comparing In-Package Circuit Routing Capability of the Single Metal Layer Tape Substrate to Two Metal Layer Tape Substrate ... 26
Figure 4-13 Single Package Die-Stack BGA 27
Figure 4-14 Custom Eight Die (Flip-Chip and Wire-Bond) SiP Assembly ... 27
Figure 4-15 Folded Multiple-Die BGA Package 27
Figure 4-16 Eight Layer Ball Stack Package 27
Figure 4-17 SO-DIMM Memory Card Assembly 28
Figure 4-18 Folded and Stacked Multiple Die BGA Package ... 28
Figure 4-19 Package-on-Package Assembly 28
Figure 4-20 Semiconductors Packaged with µPILR Substrate ... 29
Figure 4-21 Solder Interface Between µPILR-Configured Substrate Interposer and Circuit Board 29
Figure 4-22 BGA Connector .. 29
Figure 4-23 PGA Socket Pins .. 30
Figure 4-24 PGA Socket With and Without Pick and Place Cover ... 30
Figure 4-25 LGA Contact Pin .. 31
Figure 4-26 LGA Socket With and Without Pick and Place Cover ... 31
Figure 4-27 Example of Missing Balls on a BGA Component ... 35
Figure 4-28 Example of Voids in Eutectic Solder Balls at Incoming Inspection 35
Figure 4-29 Examples of Solder Ball/Land Surface Conditions ... 35
Figure 4-30 Establishing BGA Coplanarity Requirement 36
Figure 7-14 Example of Partial Underfill - package was pulled from the PCB and dark underfill can be seen in the corners ... 89
Figure 7-15 Corner Applied Adhesive ... 90
Figure 7-16 Critical Dimension for Application of Preflow Corner Glue ... 90
Figure 7-17 Typical Corner Glue Failure Mode in Shock if Glue Area is Too Low - Solder Mask Rips Off Board and Does Not Protect the Solder Joints ... 90
Figure 7-18 Fundamentals of X-Ray Technology 92
Figure 7-19 X-Ray Example of Missing Solder Balls 92
Figure 7-20 X-ray Example of Voiding in Solder Ball Contacts ... 92
Figure 7-21 Manual X-Ray System Image Quality 92
Figure 7-22 Example of X-Ray Pin Cushion Distortion and Voltage Blooming ... 93
Figure 7-23 Transmission image (2D) ... 93
Figure 7-24 Tomosynthesis image (3D) ... 93
Figure 7-25 Laminographic Cross-Section Image (3D) 94
Figure 7-26 Transmission Example ... 94
Figure 7-27 Oblique Viewing Board Tilt ... 94
Figure 7-28 Oblique Viewing Detector Tilt ... 94
Figure 7-29 Top Down View of FBGA Solder Joints 95
Figure 7-30 Oblique View of FBGA Solder Joints 95
Figure 7-31 Tomosynthesis ... 96
Figure 7-32 Scanned Beam X-Ray Laminography 96
Figure 7-33 Scanning Acoustic Microscopy ... 97
Figure 7-34 Endoscope Example ... 98
Figure 7-35 Lead-Free 1.27 mm Pitch BGA Rellowed in Nitrogen and Washed Between SMT Passes ... 98
Figure 7-36 Lead-Free BGA Rellowed in Air and Washed Between SMT Passes ... 98
Figure 7-37 Engineering Crack Evaluation Technique 99
Figure 7-38 A Solder Ball Cross Sectioned Through a Void in the Solder Ball ... 100
Figure 7-39 Cross-Section of a Crack Initiation at the Ball/Pad Interface ... 100
Figure 7-40 No Dye Penetration Under the Ball ... 100
Figure 7-41 Corner Balls have 80-100% Dye Penetration Which Indicate a Crack ... 100
Figure 7-42 Small Voids Clustered in Mass at the Ball-to-Land Interface ... 102
Figure 7-43 Typical Size and Location of Various Types of Voids in a BGA Solder Joint ... 103
Figure 7-44 X-Ray Image of Solder Balls with Voids at 50 kV (a) and 60 kV (b) ... 104
Figure 7-45 Examples of Suggested Void Protocols ... 105
Figure 7-46 Example of Voided Area at Land and Board Interface ... 108
Figure 7-47 X-Ray Image Showing Uneven Heating ... 110
Figure 7-48 X-Ray Image at 45° Showing Insufficient Heating in One Corner of the BGA ... 110
Figure 7-49 Example of Head-on-Pillow Showing Ball and Solder Paste have not Coalesced ... 110
Figure 7-50 Head-on-Pillow Process Sequence Occurrences ... 111
Figure 7-51 HoP Due to High Package Warpage ... 111
Figure 7-52 Example of Liquidus Time Delay ... 111
Figure 7-53 Solder Particles on Board Noncoalesced After Reflow ... 111
Figure 7-54 Hanging Ball Examples ... 112
Figure 7-55 X-Ray Image of Popcorning ... 112
Figure 7-56 X-Ray Image Showing Warpage in a BGA ... 113
Figure 7-57 BGA/Assembly Shielding Examples ... 114
Figure 8-1 BGA Solder Joint of Eutectic Tin/Lead Solder Composition Exhibiting Lead Rich (Dark) Phase and Tin Rich (Light) Phase Grains ... 120
Figure 8-2 Socket BGA Solder Joints of SnAgCu Composition, Showing the Solder Joint Comprised of 6 Grains (Top Photo) and a Single Grain (Bottom Photo) ... 120
Figure 8-3 Thermal-Fatigue Crack Propagation in Eutectic Tin/Lead Solder Joints in a CBGA Module ... 120
Figure 8-4 Thermal-Fatigue Crack Propagation in Sn-3.8Ag-0.7Cu Joints in a CBGA Module ... 120
Figure 8-5 Incomplete Solder Joint Formation for 1% Ag Ball Alloy Assembled at Low End of Typical Process Window ... 122
Figure 8-6 Solder Joint Failure Due to Silicon and Board CTE Mismatch ... 123
Figure 8-7 Grainy Appearing Solder Joint ... 124
Figure 8-8 Nonsolderable Land (Black Pad) ... 124
Figure 8-9 Land Contamination (Solder Mask Residue) ... 124
Figure 8-10 Solder Ball Drop ... 124
Figure 8-11 Missing Solder Ball ... 125
Figure 8-12 Example of Dynamic Warpage of Flip Chip BGA Packages and PCBs ... 125
Figure 8-13 Example of a Severely Warped BGA Package and PCB After Rellow Soldering in an Un-Optimized SMT Process ... 125
Figure 8-14 Examples of Acceptable Convex Solder Joints with Solder Joint Surface Tangents Shown in the Top Left Photo ... 126
Figure 8-15 Example of an Acceptable Columnar Solder Joint ... 126
Figure 8-16 Two Examples of Pad Cratering (Located at Corner of BGA) ... 127
Figure 8-17 Pad Crater Under 1.0 mm Pitch Lead-Free Solder Ball. Crack in Metal Trace Connected to the Land is Clear; However, the Pad Crater is Difficult to See in Bright Field Microscopy. ... 127
Figure 8-18 Cross-Section Photographs Illustrating Insufficient Melting of Solder Joints During Rellow Soldering. These Solder Joints are Located Below the Cam of a Socket ... 128
Figure 8-19 Solder Mask Influence ... 129
Table 5-1 Environmental Properties of Common

Table 4-10 Moisture Classification Level and Floor Life

Table 4-9 Typical Properties of Common

Table 4-8 IPC-4101C FR-4 Property Summaries -

Table 4-7 Pb-Free Alloy Variations 24

Table 4-6 Examples of JEDEC Registered BGA

Table 4-5 Land-to-Ball Calculations for Current and

Table 4-4 Land Size Approximation 21

Table 4-3 Future Ball Size Diameters for DSPBGAs 21

Table 4-2 Ball Diameter Sizes for PBGAs 20

Table 4-1 JEDEC Standard JEP95-1/5

Figure A-3 Void Diameter Related to Land Size 155

Figure A-2 Voids in BGAs with Crack Started at

Figure A-1 Typical Flow Diagram for Void

Table A-1 Corrective Action Indicator for Lands used

Table A-2 Corrective Action Indicator for Lands used

Table A-3 Corrective Action Indicator for Microvia

Tables

Table 3-1 Multichip Module Definitions 6

Table 3-2 Number of Escapes vs.

Table 3-3 Potential Plating or Component Termination

Table 3-4 Example of Semiconductor Cost Predictions ... 12

Table 4-1 JEDEC Standard JEP95-1/5

Table 4-2 Ball Diameter Sizes for PBGAs 20

Table 4-3 Future Ball Size Diameters for DSPBGAs 21

Table 4-4 Land Size Approximation 21

Table 4-5 Land-to-Ball Calculations for Current and

Future BGA Packages (mm) 152

Table 4-6 Examples of JEDEC Registered BGA

Outlines .. 22

Table 4-7 Pb-Free Alloy Variations 24

Table 4-8 IPC-4101C FR-4 Property Summaries -

Specification Sheets Projected to Better

Withstand Lead-Free Assembly 32

Table 4-9 Typical Properties of Common

Dielectric Materials for BGA Package

Substrates .. 34

Table 4-10 Moisture Classification Level and Floor Life 36

Table 5-1 Environmental Properties of Common

Dielectric Materials .. 39

Table 5-2 Key Attributes for Various Board Surface

Finishes ... 41

Table 5-3 Via Filling/Encroachment to Surface Finish

Process Evaluation .. 48

Table 5-4 Via Fill Options 50

Table 6-1 Number of Conductors Between Solder

Lands for 1.27 mm Pitch BGAs 52

Table 6-2 Number of Conductors Between Solder

Lands for 1.0 mm Pitch BGAs 52

Table 6-3 Maximum Solder Land to Pitch Relationship .. 53

Table 6-4 Escape Strategies for Full Arrays 57

Table 6-5 Conductor Routing - 1.27 mm Pitch 58

Table 6-6 Conductor Routing - 1.0 mm Pitch 58

Table 6-7 Conductor Routing - 0.8 mm Pitch 58

Table 6-8 Conductor Routing - 1.27 mm Pitch 58

Table 6-9 Conductor Routing - 1.0 mm Pitch 58

Table 6-10 Conductor Routing - 0.8 mm Pitch 58

Table 6-11 Effects of Material Type on Conduction 71

Table 6-12 Emissivity Ratings for Certain Materials 71

Table 7-1 Particle Size Comparisons 76

Table 7-2 Example of Solder Paste Volume

Requirements for Ceramic Array Packages 78

Table 7-3 Profile Comparison Between SnPb and SAC

Alloys .. 80

Table 7-4 Inspection Usage Application

Recommendations .. 91

Table 7-5 Field of View for Inspection 96

Table 7-6 Void Classification 103

Table 7-7 Ball-to-Void Size Image -

Comparison for Various Ball Diameters 105

Table 7-8 C=0 Sampling Plan (Sample Size for

Specific Index Value*) 106

Table 7-9 Repair Process Temperature Profiles for

Tin Lead Assembly 116

Table 7-10 Repair Process Temperature Profiles for

Lead-Free Assemblies 116

Table 8-1 Tin/Lead Component Compatibility with

Lands for 1.27 mm Pitch BGAs 52

Table 8-2 Typical Stand-Off

Heights for Tin/Lead Balls (in mm) 128

Table 8-3 Common Solders, Their Melting Points,

Advantages and Drawbacks 130

Table 8-4 Comparison of Lead-Free Solder Alloy

Compositions in The Sn-Ag-Cu Family

Selection by Various Consortia 131

Table 8-5 Types of Lead-Free Assemblies Possible 133

Table 8-6 Accelerated Testing for End Use

Environments ... 137

Table A-1 Corrective Action Indicator for Lands used

with 1.5, 1.27 or 1.0 mm Pitch 152

Table A-2 Corrective Action Indicator for Lands used

with 0.8, 0.65 or 0.5 mm Pitch 153

Table A-3 Corrective Action Indicator for Microvia

in Pad Lands used with 0.5, 0.4 or

0.3 mm Pitch .. 154

Design and Assembly Process Implementation for BGAs

1 SCOPE
This document describes the design and assembly challenges for implementing Ball Grid Array (BGA) and Fine Pitch BGA (FBGA) technology. The effect of BGA and FBGA on current technology and component types is addressed, as is the move to lead-free assembly processes. The focus on the information contained herein is on critical inspection, repair, and reliability issues associated with BGAs. Throughout this document the word “BGA” can mean all types and forms of ball/column/bump/pillar grid array packages.

1.1 Purpose
The target audiences for this document are managers, design and process engineers, and operators and technicians who deal with the electronic assembly, inspection, and repair processes. The purpose is to provide useful and practical information to those who are using BGAs, those who are considering BGA implementation and companies who are in the process of transition from standard tin/lead reflow processes to those that use lead-free materials.

1.2 Intent
This document, although not a complete recipe, identifies many of the characteristics that influence the successful implementation of a robust assembly process. In many applications, the variation between assembly methods and materials is reviewed with the intent to highlight significant differences that relate to the quality and reliability of the final product. The accept/reject criteria for BGA assemblies, used in contractual agreements, is established by J-STD-001 and IPC-A-610.

An additional challenge in implementing BGA assembly processes, along with other types of components, is the need to meet the legislative directives that declare certain materials as hazardous to the environment. The requirements to eliminate these materials from electronic assemblies have caused component manufacturers to rethink the materials used for encapsulation, the plating finishes on the components and the metal alloys used in the assembly attachment process.

2 APPLICABLE DOCUMENTS

2.1 IPC

J-STD-001 Requirements for Soldered Electrical and Electronic Assemblies

J-STD-020 Handling Requirements for Moisture Sensitive Components

J-STD-033 Standard for Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices

J-STD-609 Marking and Labeling of Components, PCBs and PCBAs to Identify Lead (Pb), Pb-Free and Other Attributes

IPC-T-50 Terms and Definitions for Printed Boards and Printed Board Assemblies

IPC-D-279 Design Guidelines for Reliable Surface Mount Technology Printed Board Assemblies

IPC-D-356 Bare Substrate Electrical Test Information in Digital Form

IPC-A-600 Acceptability of Printed Boards

IPC-A-610 Acceptability of Electronic Assemblies

IPC-SM-785 Guidelines for Accelerated Reliability Testing of Surface Mount Attachments

IPC-1601 Printed Board Handling and Storage Guidelines

IPC-2221 Generic Standard on Printed Board Design

IPC-2581 Generic Requirements for Printed Board Assembly Products Manufacturing Description Data and Transfer Methodology

IPC-2611 Generic Requirements for Electronic Product Documentation

IPC-2614 Sectional Requirements for Board Fabrication Documentation

IPC-2616 Sectional Requirements for Assembly Documentation

IPC-4554 Specification for Immersion Tin Plating for Printed Circuit Boards

IPC-4761 Design Guide for Protection of Printed Board Via Structures

IPC-7093 Design and Assembly Process Implementation for Bottom Termination Components

IPC-7094 Design and Assembly Process Implementation for Flip Chip and Die Size Components

IPC-7351 Generic Requirements for Surface Mount Design and Land Pattern Standard

IPC-7525 Stencil Design Guidelines

1. www.ipc.org