Design and Assembly Process Implementation for Embedded Components

Developed by the Embedded Devices Process Implementation Subcommittee (D-55) of the Embedded Components Committee (D-50) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 SCOPE ... 1
1.1 Purpose ... 1
1.2 Intent .. 1
2 APPLICABLE DOCUMENTS .. 1
2.1 IPC ... 1
2.2 Joint Industry Standards 2
2.3 ASME .. 2
2.4 GEIA .. 2
2.5 JEDEC .. 2
2.6 IEC ... 2
2.7 ISO/IEC .. 2
3 GENERAL DESCRIPTION .. 3
3.1 Terms and Definitions ... 4
3.1.1 Active Device ... 4
3.1.2 Active Trimming ... 4
3.1.3 Capacitance* .. 4
3.1.4 Coefficient of Thermal Expansion 4
3.1.5 Device .. 4
3.1.6 Discrete Component* 4
3.1.7 Embedded Active Component (Device) 4
3.1.8 Embedded Component 4
3.1.9 Embedded Component (Placed) 4
3.1.10 Embedded Component (Formed) 4
3.1.11 Embedded Component Base-Core (ECBC)* 4
3.1.12 Embedded Component Board Assembly (ECBA)* 4
3.1.13 Embedded Component Printed Board (ECPB)* 4
3.1.14 Embedded Component Substrate* 4
3.1.15 Embedded Substrate Testing* 4
3.1.16 Embedded Passive 4
3.1.17 Embedded Passive Component (Device) 5
3.1.18 Embedded Substrate Board* 5
3.1.19 Face Down Bonding* 5
3.1.20 Face Up Bonding* 5
3.1.21 Integrated Passive Component 5
3.1.22 Mounting Base* ... 5
3.1.23 Multilayer Printed Board (nonpreferred term, “multilayer printed circuit board”)* 5
3.1.24 Passive Array (Embedded)* 5
3.1.25 Passive Component (Element) 5
3.1.26 Passive Network (Embedded)* 6
3.1.27 Printed Board (PB) .. 6
3.1.28 Printed Circuit .. 6
3.1.29 Printed Circuit Board 6
3.1.30 Production Board 6
3.1.31 Production Panel (PP) 6
3.1.32 Production Printed Board (PPB) 6
3.1.33 Stacked Via/Microvia 6
3.1.34 Temperature Delta (ΔT)* 6
3.1.35 Temperature Coefficient of Capacitance* 6
3.1.36 Temperature Coefficient of Resistance* 6
3.1.37 Thermal Expansion Mismatch 6
3.1.38 Thermal Resistance 6
3.2 Technology Overview ... 6
3.2.1 Passive (Resistors, Capacitors, Inductors, etc.) 8
3.2.2 Active (Transistors, Memory, Semiconductors, etc.) 9
3.3 Embedded (Placed) Technology 10
3.3.1 Passive (Resistors, Capacitors, Inductors, etc.) 10
3.3.2 Active (Transistors, Memory, Semiconductors, etc.) 10
3.4 Material Requirements .. 11
3.4.1 Mounting Materials 11
3.4.2 Component Formation Materials 12
3.4.3 Attachment Materials 12
3.4.4 Encapsulation Materials 12
3.5 Cost Analysis .. 12
3.5.1 Fabrication and Manufacturing Cost Modeling 13
3.5.2 Life Cycle Costs Impacted by Embedded Components 14
3.6 Product Safety Design Considerations 15
3.7 Case Study and Decision Making 15
3.7.1 General Case Study 16
3.7.2 Scenarios for Embedded Components 16
4 COMPONENT CONSIDERATIONS 16
4.1 General Requirements .. 16
4.1.1 Part Robustness Evaluations 16
4.1.2 Test Method Correlation 17
4.1.3 Determining Values That Can Be Placed 17
4.2 Component Preparation 17
4.2.1 Passive Component Issues 17
4.2.2 Semiconductor Die Issues 17
4.2.3 Surface Redistribution 17
4.2.4 Coefficient of Thermal Expansion 17
4.3 Component Preparation 17
4.3.1 Determining Values That Can Be Placed 17
4.3.2 Component Preparation 17
4.3.3 Surface Redistribution 17
4.4 Component Preparation 17
4.4.1 Determining Values That Can Be Placed 17
4.4.2 Component Preparation 17
4.4.3 Surface Redistribution 17
4.5 Component Preparation 17
4.5.1 Determining Values That Can Be Placed 17
4.5.2 Component Preparation 17
4.5.3 Surface Redistribution 17
4.6 Component Preparation 17
4.6.1 Determining Values That Can Be Placed 17
4.6.2 Component Preparation 17
4.6.3 Surface Redistribution 17
4.7 Component Preparation 17
4.7.1 Determining Values That Can Be Placed 17
4.7.2 Component Preparation 17
4.7.3 Surface Redistribution 17
4.8 Component Preparation 17
4.8.1 Determining Values That Can Be Placed 17
4.8.2 Component Preparation 17
4.8.3 Surface Redistribution 17
4.9 Component Preparation 17
4.9.1 Determining Values That Can Be Placed 17
4.9.2 Component Preparation 17
4.9.3 Surface Redistribution 17
4.10 Component Preparation 17
4.10.1 Determining Values That Can Be Placed 17
4.10.2 Component Preparation 17
4.10.3 Surface Redistribution 17
4.3 Post Process Validations 18
4.4 Known Good Die (KGD) 18

5 MATERIALS ... 19
5.1 Organic Resins ... 19
5.1.1 Multilayer PCB Stack-Up Design 20
5.1.2 Selecting Relative Dielectric Constant 20
5.2 Nonorganic Products 20
5.3 Conductor Characteristics (Copper Foil/Film) 20
5.4 Component Forming Material 21
5.4.1 Embedded Passive Component Selection Criteria 21
5.4.2 Formed Resistors 21
5.4.3 Thick Film Resistor Cost and Performance 22
5.4.4 Sheet Film Type Resistor Elements 28
5.4.5 Embedded Capacitors 31
5.4.6 Formed Inductors 34
5.4.7 Formed Active Components 37
5.5 Adhesives (Conductive/Nonconductive) 37
5.5.1 Polymer Adhesives 38
5.5.2 Dry-Film Adhesives 38
5.6 Solder and Other Attachment Materials 38
5.7 Plating Material Properties (Characteristics, Application For Attachment) 39
5.7.1 Electrode Finish Compatibility 39

6 EMBEDDED COMPONENT PROCESS CHARACTERISTICS 39
6.1 Forming Passive Components 39
6.1.1 Tolerance Capability Evaluations 39
6.2 Forming Active Components 40
6.3 Placing Passive Components 40
6.3.1 Shape Configuration 40
6.3.2 Electrode Metallization 41
6.3.3 Shape and Configuration Considerations for Embedding 41
6.3.4 Electrode Susceptibility 41
6.3.5 Component Encroachment 41
6.4 Placing Active Components 41
6.4.1 Attachment Techniques 42
6.4.2 Flip-Chip Attachment 42
6.4.3 Gold-to-Gold Interface (GGI) 42
6.4.4 Face-Up Microvia Interface 42
6.4.5 Protective Die Methods 43
6.5 Consideration for Combining Processes 43
6.5.1 Mixed Component Types 44
6.5.2 Placement and Forming Combinations 44

7 MOUNTING BASE OR BOARD STACKUP CONSIDERATIONS 44
7.1 Mounting Base .. 44
7.2 Surface Finish for Placed Components 44
7.2.1 Electroless Nickel/Immersion Gold (ENIG) 44
7.2.2 Electroless Nickel/Electrolytic Palladium/Immersion Gold (ENEPIG) 45
7.3 Organic Solderability Preservative (OSP) 45
7.4 Electrolytic Nickel/Electrolytic Gold 45
7.5 Direct Immersion Gold (DIG) 45
7.6 Immersion Silver .. 45
7.7 Immersion Tin .. 45
7.8 Copper .. 45
7.9 Capacitor Component Formation Process 45
7.9.1 Planar Capacitance 45
7.9.2 Plane Layer Separation 46
7.9.3 Discrete Formed Capacitor Element 46
7.10 Component Attachment Process 46
7.11 Dielectric Encapsulation 47
7.12 Reinforced Prepreg 48
7.13 Unreinforced Resin 49
7.14 Resin-Coated Copper (RCC) 50
7.15 Via Hole Preparation and Interconnectivity 50
7.16 Additional Layers and Hole Preparation 51
7.17 Embedded Structure Descriptions 55
7.18 Embedded Structure Type A 56
7.19 Embedded Structure Type B 60
7.20 Embedded Structure Type C 63
7.21 Embedded Structure Type D 67
7.22 Embedded Structure Type E 71
7.23 Processes Parameters for Structure Type F1, Embedded Core Technology 74

8 DESIGN METHODOLOGY 77
8.1 Total Circuit Consideration 77
8.1.1 Internal Component Mounting 80
8.1.2 External Component Mounting 80
8.1.3 Circuit Interfaces 81
8.1.4 Internal Discrete Heat Sink 81
8.2 Layout Strategy ... 81
8.2.1 Product Functional Description 82
8.2.2 Engineering Actions 83
8.2.3 Design Density Analysis 86
8.2.4 Candidate for Embedding 86
8.2.5 Circuitry to be Embedded 89
8.3 PCB Layer Construction and Geometries 91
8.3.1 Using Radius Bends and Blind/Buried Vias 91
Figure 7-33 E1 Mounting base example with formed passive components inside the mounting base plus additional layering added to one or both sides to complete the Embedded Component Printed Board 71
Figure 7-34 E1 Process Flow .. 71
Figure 7-35 E2 Mounting base example with formed passive components inside the mounting base turning the product into a base-core ready for component mounting to complete an Embedded Component Board Assembly 72
Figure 7-36 E2 Process Flow .. 72
Figure 7-37 E3 Mounting base example with formed passive components inside the mounting base plus additional layering added to one or both sides to complete the Embedded Component Printed Board ready for component mounting to complete an Embedded Component Board Assembly 73
Figure 7-38 E3 Process Flow .. 73
Figure 7-39 Embedded Core Process Overview 74
Figure 7-40 Core with Placed Active Component and Two Buildup Layers Forming an HDI Multilayer .. 75
Figure 7-41 F1, SIP Example with Facedown Placed Passive and Active Components on Cu Foil Base and Accommodation for Mounting Components on Outer Surface 75
Figure 7-42 F1 System-in-Package Process Flow 76
Figure 7-43 F2, SiB Example with Embedded Facedown Placed Passive and Multiple Active Components on Cu Foil Base 76
Figure 7-44 F2 System-in-Board Process Flow 76
Figure 7-45 Variation F1, SiP with Embedded Processor .. 76
Figure 8-1 Electronic Component Symbols and Associated Reference Designation 77
Figure 8-2 Embedded Component Selection 78
Figure 8-3 Four Layer PCB Artwork 79
Figure 8-4 Cavity in Dielectric For Higher Profile Components .. 80
Figure 8-5 Face-up, In-Cavity Die Attach for Microvia Interface .. 81
Figure 8-6 Wireless and Portable Market Drivers 83
Figure 8-7 Functional Block Diagram Example 84
Figure 8-8 Parts List Example Showing Four Assembly Variations 86
Figure 8-9 Example of a Standard Plug in Module Board Usable Area 87
Figure 8-10 Discrete Chip Component Sizes Compared to Attachment Techniques 87
Figure 8-11 Examples of Various Stackup Layer Constructions 88
Figure 8-12 Example of Small Form Factor Final Assembly .. 88
Figure 8-13 Basic Four-Layer Circuit Structure 90
Figure 8-14 Ground Conductors Shielding for Sensitive Circuits 90
Figure 8-15 Solder Paste for Precision Dispensing 92
Figure 8-16 Dry-Film Die Attach Material Dispensing on Semiconductor Wafer 94
Figure 8-17 Thermoplastic Bonding Window 96
Figure 8-18 Six Unit Panel ECPB with Clearance for Singulation Using Mechanical Routing 96
Figure 8-19 Comparing Segmented Power Plane Topologies 98
Figure 8-20 Comparing PCB Via Variations 100
Figure 8-21 Comparing Blind Via Fill Variations 100
Figure 8-22 Wire-bond Termination for Face-up Embedded Active Die Element 101
Figure 8-23 Comparing Contact Variation for Face-Down Embedded Die Assembly 101
Figure 8-24 Flying Probe Test System 101
Figure 8-25 Comparing Hard Copy to Electronic Documentation 102
Figure 8-26 Standard Documentation Hierarchy Sectional Descriptions and Data Flow 103
Figure 8-27 Documentation Package Grade Requirements ... 104
Figure 8-28 Bill of Material Activity Requirement 107
Figure 9-1 Interconnection Opens and Shorts Test 108
Figure 9-2 Base Core Testing of Passive Components 109
Figure 9-3 Device Embedded Substrate 109
Figure 11-1 Sample Test Patterns 119
Figure B-1 SIPOS_EB0101 .. 124
Figure B-2 Test Board Details 125
Figure B-3 Three Point Bend Test 126
Figure B-4 SPIOs_EB0301 127
Figure B-5 Test Boards ... 128
Figure B-6 Testing of the SPIOs_EB0301 Coupon 129

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3-1</td>
<td>Passive Component Selection Criteria</td>
</tr>
<tr>
<td>Table 3-2</td>
<td>Common Thick and Thin-Film Ceramic Technologies</td>
</tr>
<tr>
<td>Table 3-3</td>
<td>Factors that Impact the Decision Process for Embedding Components</td>
</tr>
<tr>
<td>Table 3-4</td>
<td>Case Study Examples</td>
</tr>
<tr>
<td>Table 4-1</td>
<td>Bare Die Quality Classification</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>Glass Reinforced Laminate Thickness and Tolerances (Data source: IPC-4101)</td>
</tr>
<tr>
<td>Table 5-2</td>
<td>Standard Copper Foil Thickness</td>
</tr>
<tr>
<td>Table 5-3</td>
<td>Formed Resistor Material Variations</td>
</tr>
<tr>
<td>Table 5-4</td>
<td>Resistance Summary</td>
</tr>
<tr>
<td>Table 5-5</td>
<td>Electrical Properties</td>
</tr>
<tr>
<td>Table 7-1</td>
<td>Compatible Finishes for Attaching Bottom Termination Components to an Embedded Component Substrate (ECS)</td>
</tr>
<tr>
<td>Table 7-2</td>
<td>Assembly Process Temperature Exposure Levels</td>
</tr>
</tbody>
</table>
Table 7-3 FR-4 Material Properties to Meet Assembly Exposures ... 47
Table 7-4 Examples of Non-FR-4 Material Properties to Meet Assembly Exposure 49
Table 7-5 Requirement Identification for Resin-Coated Copper .. 50
Table 7-6 Embedded Component Base-Core Descriptions ... 56
Table 7-7 F1 and F2 Embedded Component Base-Core Descriptions .. 74
Table 8-1 General Rules for Decision Making 83
Table 8-2 Embedded Design Outsourcing Model Types ... 84
Table 8-3 Prepreg Material Style and Thickness Guide (Dimensions are shown in 1/1000 inches) 89
Table 8-4 Key Design Measures for Suppressing EMI/RFI (Data source: Nexlogic Technologies) 91
Table 8-5 Solder Alloy Composition Selection 93
Table 8-6 Comparing Attachment Material Attributes 93
Table 8-7 Comparing Adhesive Material Attributes Data source: AI Technology 95
Table 8-8 Copper Weight and Thickness 97
Table 8-9 External Layer Current Carrying Capacity Rating .. 97
Table 8-10 Internal Layer Current Carrying Capacity Rating .. 98
Table 8-11 File Segmentation and Functional Requirements .. 106
Table 9-1 Product Categories .. 110
Table 9-2 Process Qualification Recommendation 111
Table 9-3 Embedded Base-Core Repair and Modification Recommendations 113
Table 10-1 Accelerated Testing for End Use Environments .. 116
Table 10-2 Temperature Cycling Requirements, Mandated and Preferred Test Parameters within Mandated Conditions ... 117
Design and Assembly Process
Implementation for Embedded Components

1 SCOPE
This document describes the design and assembly challenges for implementing passive and active components, in either formed or placed methodology, into a printed board. The completed structure including internal electronic components is ready for surface mount and/or through-hole component attachment. The multilayered structure becomes a complete product ready for further processing in an assembly process and can be made from organic, inorganic (ceramic) or both types of material.

1.1 Purpose The target audiences for this document are managers, design and process engineers, and technicians who develop electronic assemblies that include an embedded component printed board as a part of the product. The purpose is to provide useful and practical information to those who are involved in the decision making of either formed or placed, passive or active components and to help establish inspection techniques, testing processes, and reliability validations.

1.2 Intent This document, although not a complete recipe, identifies many of the characteristics that influence the successful implementation of a robust embedded component process. In many applications, the variation between forming and placing methods and materials are reviewed with the intent to highlight significant differences that relate to the decision as to when, why, or how to establish the quality and reliability of the final product. The information also establishes the robustness that the embedded portion of the product can survive the continued processing in order to complete an Embedded Component Printed Board Assembly.

An additional challenge in implementing the processes, along with all the varieties of electronic components, internal and external, is the need to meet the legislative directives that declare certain materials as hazardous to the environment. The requirements to eliminate these materials from electronic assemblies have caused component manufacturers to rethink the materials used for encapsulation, the plating finishes on the components and the metal alloys used in the assembly attachment process.

2 APPLICABLE DOCUMENTS

2.1 IPC

IPC-J-STD-001 Requirements for Soldered Electrical and Electronic Assemblies
IPC-T-50 Terms and Definitions for Interconnecting and Packaging Electronic Circuits
IPC-D-279 Design Guidelines for Reliable Surface Mount Technology Printed Board Assemblies
IPC-D-356 Bare Substrate Electrical Test Data Format
IPC-QL-653 Certification of Facilities that Inspect/Test Printed Boards, Components and Materials
IPC-SM-784 Guidelines for Chip-on-Board Technology Implementation
IPC-SM-785 Guidelines for Accelerated Reliability Testing of Surface Mount Attachments
IPC-2316 Design Guide for Embedded Passive Device Printed Boards
IPC-2581 Generic Requirements for Printed Board Assembly Products Manufacturing Description Data and Transfer Methodology
IPC-4101 Specification for Base Materials for Rigid and Multilayer Printed Boards
IPC-4562 Metal Foil for Printed Wiring Applications

1. www.ipc.org