Qualification and Performance Specification for Flexible Printed Boards

Developed by the Flexible Circuits Performance Specifications Subcommittee (D-12) of the Flexible Circuits Committee (D-10) of IPC

Supersedes:
IPC-6013B - January 2009
IPC-6013A with Amendment 2 - April 2006
IPC-6013A with Amendment 1 - January 2005
IPC-6013A - November 2003
Amendment 1 - December 2005
IPC-6013 with Amendment 1
Includes:
IPCI-6013 - November 1998
Amendment 1 - April 2000
IPC-RF-245 - April 1987
IPC-FC-250A - January 1974

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1219
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 SCOPE ... 1
 1.1 Statement of Scope .. 1
 1.2 Purpose ... 1
 1.3 Performance Classification, Board Type, and Installation Usage .. 1
 1.3.1 Classification .. 1
 1.3.2 Printed Board Type 1
 1.3.3 Installation Uses 1
 1.3.4 Selection for Procurement 1
 1.3.5 Material, Plating Process and Final Finish 1
 1.4 Terms and Definitions 2
 1.4.1 As Agreed Upon Between User and Supplier (AABUS) .. 2
 1.4.2 Button Plating .. 2
 1.4.3 Coverlay .. 2
 1.4.4 Coverfilm .. 3
 1.4.5 Covercoat .. 3
 1.4.6 Cover Material .. 3
 1.4.7 Target Land ... 3
 1.4.8 Capture Land ... 3
 1.4.9 Microvia .. 4
 1.4.10 Core ... 4
 1.5 Interpretation ... 4
 1.6 Presentation .. 4
 1.7 Revision Level Changes 4

2 APPLICABLE DOCUMENTS .. 4
 2.1 IPC .. 4
 2.2 Joint Industry Standards 6
 2.3 Other Publications ... 6
 2.3.1 American Society for Testing and Materials ... 6
 2.3.2 Underwriters Lab .. 6
 2.3.3 National Electrical Manufacturers Association ... 7
 2.3.4 American Society for Quality 7
 2.3.5 AMS .. 7
 2.3.6 American Society of Mechanical Engineers 7
 2.3.7 Federal ... 7

3 REQUIREMENTS ... 7
 3.1 General ... 7
 3.2 Materials Used in this Specification 7
 3.2.1 Laminates and Bonding Materials 7
 3.2.2 External Bonding Materials 7
 3.2.3 Other Dielectric Materials 8
 3.2.4 Metal Foils .. 8
 3.2.5 Metal Planes/Cores 8
 3.2.6 Base Metallic Plating Depositions and Conductive Coatings .. 8
 3.2.7 Final Finish Depositions and Coatings - Metallic and Non-Metallic 8
 3.2.8 Polymer Coating (Solder Mask) 8
 3.2.9 Fusing Fluids and Fluxes 8
 3.2.10 Marking Inks .. 8
 3.2.11 Hole Fill Insulation Material 8
 3.2.12 Heatsink Planes, External 8
 3.2.13 Via Protection ... 8
 3.2.14 Embedded Passive Materials 8
 3.3 Visual Examination ... 12
 3.3.1 Profile .. 12
 3.3.2 Construction Imperfections 12
 3.3.3 Plating and Coating Voids in the Hole 12
 3.3.4 Lifted Lands ... 12
 3.3.5 Marking ... 12
 3.3.6 Solderability .. 12
 3.3.7 Plating Adhesion 12
 3.3.8 Edge Board Contact, Junction of Gold Plate to Solder Finish ... 12
 3.3.9 Workmanship ... 12
 3.4 Dimensional Requirements 12
 3.4.1 Hole Size, Hole Pattern Accuracy and Pattern Feature Accuracy ... 12
 3.4.2 Annular Ring and Breakout (External) 12
 3.4.3 Bow and Twist (Individual Rigid or Stiffener Portions Only) .. 12
 3.4.4 Array Sub-Pallets 12
 3.5 Conductor Definition 12
 3.5.1 Conductor Width and Thickness 12
 3.5.2 Conductor Spacing 12
 3.5.3 Conductor Imperfections 12
 3.5.4 Conductive Surfaces 12
 3.6 Structural Integrity 12
 3.6.1 Thermal Stress Testing 12
 3.6.2 Requirements for Microsectioned Coupons or Production Boards 12
 3.7 Solder Mask Requirements 12
 3.7.1 Solder Mask Coverage 12
 3.7.2 Solder Mask Cure and Adhesion 12
 3.7.3 Solder Mask Thickness 12
4 QUALITY ASSURANCE PROVISIONS 42
4.1 General ... 42
4.1.1 Qualification .. 43
4.1.2 Sample Test Coupons 43
4.2 Acceptance Testing and Frequency 46
4.2.1 C=0 Zero Acceptance Number Sampling Plan 50
4.2.2 Referee Tests ... 50
4.3 Quality Conformance Testing 50
4.3.1 Coupon Selection 50

5 NOTES .. 50
5.1 Ordering Data ... 50
5.2 Superseded Specifications 50

APPENDIX A .. 51

Figures

Figure 3-1 Transition Zone ... 13
Figure 3-2 Unacceptable Covercoat Coverage 15
Figure 3-3 Solder Wicking and Plating Penetration 16
Figure 3-4 Annular Ring Measurement (External) 20
Figure 3-5 Breakout of 90° and 180° 20
Figure 3-6 Conductor Width Reduction 20
Figure 3-7 Major and Minor Access Holes for Flexible Printed Boards 20
Figure 3-8 Squeeze-Out of Cover Film Adhesive and Ooze-Out of Covercoat 21
Figure 3-9 Missing material or skips in the bead of adhesive squeeze-out at coverlay edges 21
Figure 3-10 Unnecessary Copper Between Conductor and Nodule of Conductor 22
Figure 3-11 Rectangular Surface Mount Lands 23
Figure 3-12 Round Surface Mount Lands 23
Figure 3-13 Separation at External Foil 27
Figure 3-14 Crack Definition 27
Figure 3-15 Typical Microsection Evaluation Specimen ... 28
Figure 3-16 Etchback Depth Allowance 29
Figure 3-17 Maximum Dielectric Removal Resulting From Etchback 29
Figure 3-18 Smear Removal Allowance 30
Figure 3-19 Negative Etchback 30
Figure 3-20 Plating Folds/Inclusions - Minimum Measurement Points 30
Figure 3-21 Annular Ring Measurement (Internal) 31
Figure 3-22 Microsection Rotations for Breakout Detection 31
Figure 3-23 Comparison of Microsection Rotations 31
Figure 3-24 Surface Copper Wrap Measurement (Applicable to all filled plated-through holes) 33
Figure 3-25 Wrap Copper in Type 4 Printed Boards (Acceptable) 33
Figure 3-26 Wrap Copper Removed by Excessive Sanding/Planarization (Not Acceptable) 33
Figure 3-27 Copper Cap Thickness 34
Figure 3-28 Copper Cap Filled Via Height (Bump) 34
Figure 3-29 Copper Cap Depression (Dimple) 34
Figure 3-30 Copper Cap Plating Voids 34
Figure 3-31 Example of Acceptable Voids in a Copper Filled Microvia 34

vi
Figure 3-32 Example of Nonconforming Void in Copper Filled Microvia 35
Figure 3-33 Microvia Contact Dimension 35
Figure 3-34 Metal Core to Plated-Through Hole Spacing ... 37
Figure 3-35 Measurement of Minimum Dielectric Spacing ... 37
Figure 3-36 Bending Test ... 41

Tables
Table 1-1 Default Requirements 2
Table 3-1 Internal or External Metal Planes 8
Table 3-2 Final Finish and Coating Requirements 10
Table 3-3 Surface and Hole Copper Plating Minimum Requirements for Through-Holes 11
Table 3-4 Surface and Hole Copper Plating Minimum Requirements for Buried Vias > 2 Layers, and Blind Vias ... 11
Table 3-5 Surface and Hole Copper Plating Minimum Requirements for Micro vias (Blind and Buried) .. 11
Table 3-6 Surface and Hole Copper Plating Minimum Requirements for Buried via cores (2 layers) ... 11
Table 3-7 Covercoat Adhesion .. 16
Table 3-8 Solder Wicking/Plating Penetration Limits 16
Table 3-9 Plating and Coating Voids Visual Examination .. 17
Table 3-10 Edge Board Contact Gap 18
Table 3-11 Minimum Etch Annular Ring 19
Table 3-12 Allowable Squeeze-Out of Coverlay Adhesive and Ooze-Out of Covercoat 21
Table 3-13 Minimum Solderable Annular Ring on Land Area .. 21
Table 3-14 Conductor Spacing Requirements 22
Table 3-15 Plated-Through Hole Integrity After Stress 26
Table 3-16 Cap Plating Requirements 34
Table 3-17 Microvia Contact Dimension 35
Table 3-18 Internal Layer Foil Thickness after Processing .. 36
Table 3-19 Conductor Thickness after Plating 36
Table 3-20 Solder Mask Adhesion 38
Table 3-21 Dielectric Withstanding Test Voltages 39
Table 3-22 Insulation Resistance 39
Table 4-1 Qualification Testing .. 43
Table 4-2 C=0 Sampling Plan per Lot Size 46
Table 4-3 Acceptance Testing and Frequency 46
Table 4-4 Quality Conformance Testing 50
Qualification and Performance Specification for Flexible Printed Boards

1 SCOPE

1.1 Statement of Scope This specification covers qualification and performance requirements of flexible printed boards. The flexible printed board may be single-sided, double-sided, multilayer, or rigid-flex multilayer. All of these constructions may or may not include stiffeners, plated-through holes, and blind/buried vias.

The flexible or rigid-flex printed board may contain build up High Density Interconnect (HDI) layers. The printed board may contain embedded active or passive circuitry with distributive capacitive planes, capacitive or resistive components conforming to IPC-6017.

The rigid section of the printed board may contain a metal core or external metal heat frame, which may be active or non-active.

Revision level changes are described in 1.7.

1.2 Purpose The purpose of this specification is to provide requirements for qualification and performance of flexible printed boards designed to IPC-2221 and IPC-2223.

1.3 Performance Classification, Board Type, and Installation Usage

1.3.1 Classification This specification recognizes that flexible printed boards will be subject to variations in performance requirements based on end-use. These performance classes (Class 1, Class 2, and Class 3) are defined in IPC-6011.

1.3.2 Printed Board Type Performance requirements are established for the different types of flexible printed boards, classified as follows:

Type 1 Single-sided flexible printed boards containing one conductive layer, with or without stiffeners.

Type 2 Double-sided flexible printed boards containing two conductive layers with plated-through holes (PTHs), with or without stiffeners.

Type 3 Multilayer flexible printed boards containing three or more conductive layers with PTHs, with or without stiffeners.

Type 4 Multilayer rigid and flexible material combinations containing three or more conductive layers with PTHs.

Type 5 Flexible or rigid-flex printed boards containing two or more conductive layers without PTHs.

1.3.3 Installation Uses

Use A Capable of withstanding flex during installation.

Use B Capable of withstanding continuous flexing for the number of cycles as specified on the procurement documentation.

Use C High temperature environment (over 105 °C [221 °F]).

Use D UL Recognition. See UL 94 and UL 796F.

1.3.4 Selection for Procurement For procurement purposes, performance class and installation usage shall be specified in the procurement documentation.

The documentation shall provide sufficient information to the supplier so that the supplier can fabricate the flexible printed boards and ensure that the user receives the desired product. Information that should be included in the procurement documentation is shown in IPC-2611 and IPC-2612.

Note: If the drawing specifies the requirement in words, designators are not required.