Specification for Embedded Passive Device Capacitor Materials for Rigid and Multilayer Printed Boards

Developed by the Embedded Component Materials Subcommittee (D-52) of the Embedded Components Committee (D-50) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1219
Tel 847 615.7100
Fax 847 615.7105
Foreword:
IPC-4821 was developed based on industry knowledge at the time. Embedded passive devices may be made with a large variety of materials and cover a wide range of fabrication processes. At the time of writing this specification, use of these materials was not widespread. As such, it is anticipated that updates to this document will be needed in the future. In the meantime, it is recommended that the customer and supplier work together to set the criteria for acceptance of embedded passive material products.
Table of Contents

1 SCOPE ... 1
 1.1 General .. 1
 1.2 Designation System 2
 1.2.1 Embedded Capacitor Passive Device Designations 3
2 APPLICABLE DOCUMENTS 4
 2.1 IPC .. 4
 2.2 American Society for Testing and Materials (ASTM) 4
 2.3 Underwriters Laboratories (UL) 4
 2.4 National Conference of Standards Laboratories (NCSL) ... 4
 2.5 International Organization for Standardization 4
 2.6 International Electrotechnical Commission 4
3 REQUIREMENTS .. 5
 3.1 Terms and Definitions 5
 3.1.1 Embedded Planar Capacitor 5
 3.1.2 Embedded Discrete Capacitor 5
 3.2 Specification Sheets 5
 3.3 Supplier’s Quality Profile 5
 3.4 Qualification (Characterization) Testing 5
 3.4.1 Material Qualification 5
 3.4.1.1 Samples .. 5
 3.4.1.2 Frequency .. 5
 3.4.1.3 Production Board Qualification Assessment of Materials 5
 3.5 Conformance Testing 5
 3.5.1 Samples .. 7
 3.5.2 Frequency .. 7
 3.6 Verification of Supplier’s Quality System 7
 3.7 Conflict ... 8
 3.8 Materials .. 8
 3.8.1 Capacitor Materials in Laminate-Like Form 8
 3.8.2 Capacitor Materials in Nonlaminate-Like Form 8
 3.8.3 Encapsulant Materials in Nonlaminate-Like Form 8
 3.8.4 Conductor/Termination Materials 8
 3.8.4.1 Copper Foil or Other Metal 8
 3.8.4.2 Plated Copper 8
 3.8.4.3 Conductive Paste 8
 3.8.4.4 Other Plated Metals 8
 3.9 General Acceptability 8
 3.9.1 General Acceptability of Dielectric Materials 8
 3.9.2 General Acceptability of Conductive Materials 8
 3.9.3 Inspection .. 8
 3.9.3.1 Inspection Lot 8
 3.9.3.2 Preparation of Samples 9
 3.9.3.3 Standard Laboratory Conditions 9
 3.9.3.4 Visual Requirements 9
 3.9.3.5 Visual Requirements of Laminate-Like Capacitor Materials 9
 3.9.3.6 Metal Indentations 9
 3.9.3.7 Scratches .. 9
 3.9.3.8 Surface Finish of Foil after Curing - Except Double Treatment 9
 3.9.3.9 Wrinkles and Creases 9
 3.9.3.10 Surface and Subsurface Imperfections 9
 3.9.3.11 Inclusions .. 10
 3.9.3.12 Voids, Cracks or Pin Holes 10
 3.9.3.13 Tears and Delaminations 10
 3.9.3.14 Visual Requirements of Nonlaminate-Like Capacitor Materials 10
 3.9.3.15 Foreign Material 10
 3.9.3.16 Voids or Pin Holes 10
 3.9.3.17 Delaminations 10
 3.9.3.18 Dimensional Requirements 10
 3.9.3.19 Dimensional Requirements of Laminate-Like Capacitor Materials 10
 3.9.3.20 Thickness .. 10
 3.9.3.21 Dimensional Stability 10
 3.9.3.22 Metal Conductor Weight 11
 3.9.3.23 Mechanical Requirements 11
 3.9.3.24 Mechanical Requirements of Laminate-Like Capacitor Materials 11
 3.9.3.25 Peel Strength ... 11
 3.9.3.26 Bow and Twist 11
 3.9.3.27 Glass Transition Temperature (Tg) 11
 3.9.3.28 Glass Transition Temperature, Tg 11
 3.9.3.29 CTE Above and Below the Tg 11
 3.9.3.30 CTE Above and Below Tg 12
 3.9.3.31 Viscosity ... 12

May 2006
IPC-4821
3.13 Thermal Requirements 12
3.13.1 Thermal Requirements of Laminate-
Like Capacitor Materials 12
3.13.1.1 Flammability ... 12
3.13.2 Thermal Requirements of Nonlaminate-
Like Capacitor Materials 12
3.13.2.1 Flammability ... 12
3.14 Electrical Requirements 12
3.14.1 Electrical Requirements of Laminate-
Like Capacitor Materials 12
3.14.1.1 Permittivity .. 12
3.14.1.2 Loss Tangent ... 13
3.14.1.3 Dielectric Strength .. 13
3.14.1.4 HiPot Voltage .. 13
3.14.1.5 Capacitance Density 13
3.14.1.6 Surface and Volume Resistivity 13
3.14.1.7 Temperature Coefficient of Capacitance (TCC) 13
3.14.2 Electrical Requirements of Nonlaminate-
Like Capacitor Materials 14
3.14.2.1 Permittivity .. 14
3.14.2.2 Loss Tangent ... 14
3.14.2.3 Dielectric Strength .. 14
3.14.2.4 HiPot Voltage .. 14
3.14.2.5 Capacitance Density 15
3.14.2.6 Surface and Volume Resistivity 15
3.14.2.7 Temperature Coefficient of Capacitance (TCC) 15
3.14.2.8 Conductivity of Conductive Layer Paste 15
3.15 Environmental Requirements 15
3.15.1 Environmental Requirements of Laminate-
Like Capacitor Materials 15
3.15.1.1 Moisture Resistance by Pressure Vessel Test (Optional) 15
3.15.1.2 Moisture and Water Absorption 15
3.15.1.3 High Temperature and Humidity Accelerated Aging 15
3.15.1.4 Thermal Stress (Solder Float) 16
3.15.1.5 Conductive Anodic Filament Testing (CAF) (Optional) 16
3.15.2 Environmental Requirements of Nonlaminate-like Capacitor Materials 16
3.15.2.1 Moisture Resistance by Pressure Vessel Test (Optional) 16
3.15.2.2 Moisture and Water Absorption 16
3.15.2.3 High Temperature and Humidity Accelerated Aging 16
3.16 Workmanship ... 16
3.17 Material Safety Data Sheets 16
3.18 Shelf Life .. 16
3.19 Marking ... 17

4 QUALITY ASSURANCE PROVISIONS 17
4.1 Quality System .. 17
4.2 Responsibility for Inspection 17
4.2.1 Test Equipment and Inspection Facilities 17
4.2.2 Standard Laboratory Conditions 17
4.3 Qualification (Characterization) Testing 17
4.3.1 Samples ... 17
4.3.2 Structurally Similar Construction 17
4.3.3 Laboratory Equipment Tolerances 17
4.4 Quality Conformance Inspection 17
4.4.1 Frequency .. 17
4.4.2 Inspection of Product for Delivery 17
4.4.3 Acceptance Criteria 17
4.4.4 Rejected Lots .. 17
4.5 Statistical Process Control (SPC) 18

5 PREPARATION FOR DELIVERY 18
5.1 Packing .. 18

6 NOTES ... 18
6.1 Ordering Data .. 18
6.2 Electrostatic Discharge (ESD) Testing 18
6.3 HiPot Test Method ... 18

Figures
Figure 1-1a Embedded Planar Capacitor Saves Valuable Surface Real Estate 1
Figure 1-1b Embedded Discrete Capacitor Defined by Plate Size and Separating Dielectric 1

Tables
Table 1-1 Sample Embedded Capacitor Passive Device Designation 3
Table 3-1 Testing Requirements for Laminate-
Like Materials ... 6
Table 3-2 Testing Requirements for Nonlaminate-
Like Capacitor Materials 7
Table 3-3 Point Value System for Metal Indentations 9
1 SCOPE

This document describes materials that can be used for the fabrication of embedded passive capacitor devices within the finished printed circuit board substrate. For this document, embedded passive devices and the phrase embedded passives are considered to be equivalent. It provides information on general designations and associated characteristics of embedded passive device (EPD) capacitor materials. The document shall be used as a qualification and conformance standard for these materials.

This document contains material designation, conformance (requirements), qualification (characterization) and quality assurance specifications. IPC-4821 shall be used in conjunction with IPC-2000 series design standards and IPC-6000 series performance standards.

Embedded passive resistor material designation, conformance (requirements), qualification (characterization) and quality assurance specifications are contained in IPC-4811.

1.1 General

This document covers the requirements for dielectric, conductive, and insulating materials that are used with materials for the manufacture of printed circuit boards containing embedded passive capacitor functionality. Figures 1-1a & 1-1b show representations of how embedded passives may appear in a PWB.

- Embedded passives are used to enhance high speed, high frequency performance.
- Embedded passives are used to increase circuit density and simplify design of circuitry features such as decoupling capacitance and terminating resistors.
- Embedded passives are used to simplify assembly by mounting fewer components, thereby increasing functionality and/or reducing total board area.