Specification for Electroless Nickel/Immersion Gold (ENIG) Plating for Printed Circuit Boards

Developed by the Plating Processes Subcommittee (4-14) of the Fabrication Processes Committee (4-10) of IPC

Users of this standard are encouraged to participate in the development of future revisions.

Contact:

IPC
2215 Sanders Road
Northbrook, Illinois 60062-6135
Tel 847 509.9700
Fax 847 509.9798
Table of Contents

1 SCOPE .. 1
 1.1 Scope ... 1
 1.2 Description ... 1
 1.2.1 Phosphorus/Boron Content 1
 1.3 Objective .. 1
 1.4 Performance Functions 2
 1.4.1 Solderability .. 2
 1.4.2 Contact Surface .. 2
 1.4.2.1 Membrane Switches 2
 1.4.2.2 Metallic Dome Contacts 2
 1.4.3 EMI Shielding .. 2
 1.4.4 Conductive (Replacement for Solder) 2
 1.4.5 Connectors ... 2
 1.4.5.1 Press Fit ... 2
 1.4.5.2 Edge Tab ... 2
 1.4.6 Aluminum Wire Bonding 2

2 APPLICABLE DOCUMENTS ... 2
 2.1 IPC ... 2
 2.2 ASTM International (ASTM) 2
 2.3 Defense Standardization Program 2
 2.4 Telcordia Technologies, Inc. 2
 2.5 International Organization for Standardization (ISO) 2

3 REQUIREMENTS .. 3
 3.1 Visual .. 3
 3.2 Finish Thickness ... 3
 3.2.1 Electroless Nickel Thickness 3
 3.2.2 Immersion Gold Thickness 3
 3.3 Porosity .. 3
 3.4 Adhesion .. 3
 3.5 Solderability ... 3
 3.6 Cleanliness .. 4
 3.7 Chemical Resistance 4
 3.8 High Frequency Signal Loss 4

4 QUALITY ASSURANCE PROVISIONS 4
 4.1 Qualification .. 4
 4.1.1 Sample Test Coupons .. 5
 4.2 Acceptance Tests ... 5
 4.3 Quality Conformance Testing 5

APPENDIX 1 Chemical Definitions 6
APPENDIX 2 Process Sequence 7
APPENDIX 3 Qualification of ENIG Process by the Board Supplier 8
APPENDIX 4 Recommendation For Thickness Measurement 9
APPENDIX 5 Standard Developments Efforts of Electroless Nickel Immersion Gold .. 10

Figures
 Figure 3-1 Uniform Plating ... 3
 Figure 3-2 Extraneous Plating or Nickel Foot 3
 Figure 3-3 Edge Pull Back .. 4
 Figure 3-4 Skip Plating ... 4
 Figure 4-1 IPC-2221 Test Speciman M, Surface Mount 5
 Solderability Testing, mm [in] .. 5
 Figure 1 Results from Gold Thickness Survey 11
 Figure 2 Results from Nickel Thickness Survey 12
 Figure 3 Comparison of Gold Thickness Values by XRF Machine Type 14
 ...Continued...

Tables
 Table 3-1 Requirements of Electroless Nickel Immersion Gold Plating 1
 Table 4-1 Qualification Test Coupons 5
Specification for Electroless Nickel/Immersion Gold (ENIG) Plating for Printed Circuit Boards

1 SCOPE

1.1 Scope This specification sets the requirements for the use of Electroless Nickel/Immersion Gold (ENIG) as a surface finish for printed circuit boards. This specification is intended to set requirements for ENIG deposit thicknesses based on performance criteria. It is intended for use by supplier, printed circuit manufacturer, electronics manufacturing services (EMS) and original equipment manufacturer (OEM).

1.2 Description ENIG is an electroless nickel layer capped with a thin layer of immersion gold. It is a multifunctional surface finish, applicable to soldering, aluminum wire bonding, press fit connections, and as a contact surface. The immersion gold protects the underlying nickel from oxidation/passivation over its intended life. However, this layer is not totally impervious and it will not pass the requirements of a ‘classic’ porosity test.

1.2.1 Phosphorus/Boron Content Phosphorus or boron containing reducing agents are used for the reduction of the electroless nickel during the deposition process. Phosphorus or boron is thus incorporated in the nickel deposit. The level of these co-deposited elements should be controlled within the specified process limit. Variation of phosphorus or boron level, outside the specified process limits, may have adverse effects on the solderability of the finish.

1.3 Objective This specification sets the requirements specific to ENIG as a surface finish (see Table 3-1 for a summary of these requirements). As other finishes require specifications, they will be addressed by the IPC Plating Processes Subcommittee as part of the IPC-4550 specification family. As this and other applicable specifications are under continuous review, the subcommittee will add appropriate amendments and make necessary revisions to these documents.

Table 3-1 Requirements of Electroless Nickel Immersion Gold Plating

<table>
<thead>
<tr>
<th>Tests</th>
<th>Test Method</th>
<th>Requirement Paragraph</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual</td>
<td>Visual</td>
<td>3.1</td>
<td>Uniform plating and complete coverage of surface to be plated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electroless Nickel Thickness</td>
<td>APPENDIX 4</td>
<td>3.2.1</td>
<td>3 to 6 µm [118.1 to 236.2 µin]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immersion Gold Thickness</td>
<td>APPENDIX 4</td>
<td>0</td>
<td>0.05 µm minimum [1.97 µin minimum]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porosity</td>
<td>N/A</td>
<td>3.3</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion/Tape Test</td>
<td>IPC-TM-650</td>
<td>3.4</td>
<td>No evidence of plating removed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solderability</td>
<td>J-STD-003</td>
<td>3.5</td>
<td>Meet solderability requirements of Category 3 durability with six months shelf life.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorous/Boron Content</td>
<td>ASTM B-733-97 & ASTM B607-91 (1998)</td>
<td>1.2.1</td>
<td>(Reference Only; Supplier Dependent - No Testing Required)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Resistance</td>
<td>N/A</td>
<td>3.7</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Frequency Signal Loss</td>
<td></td>
<td>3.8</td>
<td>TBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Resistance</td>
<td></td>
<td>1.4.2</td>
<td>TBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleanliness</td>
<td>IPC-TM-650</td>
<td>3.6</td>
<td>Max. 1.56 µg/cm²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) An appropriate IPC-TM-650 test method used to generate data for this electrical property is not available at the time of this writing.