IPC-2615

Printed Board Dimensions
and Tolerances

IPC-2615
July 2000
A standard developed by IPC
Table of Contents

1 PURPOSE

1.1 Scope ... 1
1.2 General .. 1
1.2.1 Units .. 1
1.2.2 Reference to This Standard 1
1.2.3 Figures ... 1
1.2.4 Notes ... 1
1.2.5 Reference to Gauging 1
1.3 References .. 1
1.3.1 IPC Specifications ... 1
1.3.2 ANSI Standards ... 1

2 TERMS AND DEFINITIONS

2.1 Actual Size .. 1
2.2 Basic Dimension .. 1
2.3 Bilateral Tolerance ... 1
2.4 Cumulative Tolerances .. 1
2.5 Datum ... 2
2.6 Datum Feature .. 2
2.7 Datum Axis .. 2
2.8 Datum Target .. 2
2.9 Dependent of Size ... 2
2.10 Dimension .. 2
2.11 End Product (End Item) 2
2.12 Fabrication Allowance 2
2.13 Feature .. 2
2.14 Feature of Size .. 2
2.15 Fiducial ... 2
2.16 Geometric Tolerance .. 2
2.17 Limits of Size ... 2
2.18 Least Material Condition (LMC) 2
2.19 Maximum Material Condition (MMC) 2
2.20 Positional Tolerance ... 2
2.21 Reference Dimension 2
2.22 Regardless of Feature Size (RFS) 2
2.23 Simulated Datum ... 2
2.24 Tolerance .. 2
2.25 Tolerance, Statistical 2
2.26 Toleranced Dimension 3
2.27 True Position .. 3
2.28 Undimensioned Drawing 3
2.29 Unilateral Tolerance 3
2.30 Virtual Condition .. 3

3 GEOMETRIC CHARACTERS AND SYMBOLS

3.1 General .. 3
3.2 Use of Notes to Supplement Symbols 3
3.3 Symbol Construction .. 3
3.3.1 Geometric Characteristic Symbols 3
3.3.2 Datum Feature Symbol 3
3.3.3 Basic Dimension Symbol 3
3.3.4 Material Condition Symbols 4
3.3.5 Diameter and Radius Symbols 4
3.3.6 Reference Symbol ... 4
3.4 Geometric Tolerance Symbols 4
3.4.1 Feature Control Frame 4
3.4.2 Feature Control Frame Incorporating Datum References ... 4
3.4.3 Combined Feature Control Frame and Datum Feature Symbol ... 5
3.5 Feature Control Frame Placement 6

4 GENERAL RULES

4.1 Maximum Material Condition Principle (MMC) Effect of MMC ... 7
4.2 Regardless of Feature Size 7
4.3 Least Material Condition Principle 7
4.4 Limits of Size ... 7
4.4.1 Individual Feature of Size (Rule #1) 7
4.4.2 Relationship Between Individual Features 9
4.5 Applicability of MMC, RFS, and LMC 9

5 DATUM REFERENCING

5.1 General .. 9
5.1.1 Application ... 9
5.1.2 Datum Reference Frame10
5.2 Datum Features ... 10
5.2.1 Datum Feature Symbols 10
5.2.2 Datum Feature Control 10
5.2.3 Specifying Datums in Order of Precedence 11
5.3 Establishing Datums .. 12
5.3.1 Primary Datum Feature 12
5.3.2 Secondary and Tertiary Datum Features Not Subject to Size Variations 12
5.3.3 Secondary and Tertiary Datum Features Subject to Size Variations 12
5.3.4 Specifying Datum Features RFS 12
5.3.5 Specifying Datum Features at MMC 13
5.3.6 Cylindrical Datum Features 13
5.3.7 Angular Orientation 16
Printed Board Dimensions and Tolerances

1 PURPOSE
The purpose of this Standard is to establish acceptable principals and practices for dimensioning and tolerancing used to define end-product requirements for printed boards and printed board assemblies.

1.1 Scope
This Standard covers dimensioning and tolerancing of electronic packaging as it relates to printed boards and the assembly of printed boards. The concepts defined in this Standard are derived from ASME Y14.5M-1994. Printed boards have such wide applications that there may be times where this standard does not address a specific case. In those cases, the user is referred to ASME Y14.5M 1994 for use of additional dimensioning and tolerancing concepts.

1.2 General
This Standard covers dimensioning, tolerancing, and related practices for use on printed board drawings and in related documents. Uniform practices for stating and interpreting these requirements are established herein.

1.2.1 Units
The International System of Units (SI) is featured in this Standard.

1.2.2 Reference to This Standard
Where drawings are based on this Standard, this fact shall be noted on the drawings or in a document referenced on the drawings. References to this Standard shall state “IPC-2615 or per IPC-2615.”

1.2.3 Figures
The figures in this Standard are intended only as illustrations to aid the user in understanding the principles and methods of dimensioning and tolerancing described in the text. The absence of a figure illustrating the desired application is neither reason to assume inapplicability nor basis for drawing rejection. In some instances figures show added detail for emphasis, in other instances figures are incomplete by intent. Numerical values of dimensions and tolerances are illustrative only.

1.2.4 Notes
Notes herein in capital letters are intended to appear on finished drawings. Notes in lower case letters are explanatory only and are not intended to appear on drawings.

1.2.5 Reference to Gauging
This document is not intended as a gauging standard. Any reference to gauging is included for explanatory purposes only.

1.3 References
1.3.1 IPC Specifications
IPC-T-50 Terms and Definitions
IPC-D-310 Guidelines for Phototool and Artwork Generation
IPC-D-325 Documentation for Printed Boards and Printed Board Assemblies
IPC-D-330 Design Guide for Printed Boards and Printed Board Assemblies
IPC-2220 Design Standard Series for Printed Boards
IPC-6010 Performance Specification Series for Printed Boards

1.3.2 ANSI Standards
When the following American National Standards referred to in this Standard are superseded by a revision approved by the American National Standards Institute, Inc., the latest revision shall apply.
ANSI Y14.2M-1979, Line Conventions and Lettering
ASME Y14.5M-1994, Geometric Dimensioning and Tolerancing
ANSI Z210.1-1976, Metric Practice

2 TERMS AND DEFINITIONS
The definition of terms shall be in accordance with IPC-T-50 and the following.

2.1 Actual Size
The measured size.

2.2 Basic Dimension
A numerical value used to describe the theoretically exact size, profile, orientation, or location of a feature or datum target. It is the basis from which permissible variations are established by tolerances on other dimensions, in notes, or in feature control frames (see 3.4.1).

2.3 Bilateral Tolerance
A tolerance in which variation is permitted in both directions from the specified dimension.

2.4 Cumulative Tolerances
The summation of all tolerances permitted between functionally related features.

1. IPC, 2215 Sanders Road, Northbrook, IL 60062
2. ANSI, 655 15th Street N.W., Suite 300, Washington, DC 20005-5794