

IPC-2316

Design Guide for Embedded Passive Device Printed Boards

Developed by the Embedded Devices Design Subcommittee (D-51) of the Embedded Components Committee (D-30) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC 3000 Lakeside Drive, Suite 309S Bannockburn, Illinois 60015-1249 Tel 847 615.7100 Fax 847 615.7105

Table of Contents

1 SC	COPE
1.1	Statement of Scope 1
1.2	Purpose 1
1.3	Terms and Definitions 1
2 A	PPLICABLE DOCUMENTS 3
2.1	IPC
2.2	National Conference of Standards Laboratories (NCSL)
2.3	International Standards 3
2.4	International Electrotechnical Commission (IEC) Standards
3 G	ENERAL INTRODUCTION
3.1	History of Embedded Passive Technologies 3
3.1.1	History of Additive Polymer Thick-Film Resistor Technology
3.1.2	History of Additive Thin-Film Resistor Technology
3.1.3	History of Subtractive Planar Thin-Film Resistor Technology
3.1.4	History of Distributed Planar Capacitor Technology
3.1.5	History of Polymer Thick-Film Capacitor Technology
3.1.6	History of Ceramic Thick-Film and Thin-Film Capacitor Technology
3.1.7	History of Ceramic Filled Photodielectric Capacitor Technology
3.2	Embedded Passive Component Selection Criteria
3.3	Cost Analysis
3.3.1	Fabrication and Manufacturing Cost Modeling 8
3.3.2	Embedded Resistor Trimming and Rework Economics
3.3.3	Life Cycle Costs Impacted by Embedded Passives [22]
3.4	Product Safety Design Considerations 12
4 EI	MBEDDED RESISTORS 12
4.1	Physical Characteristics 12
4.1.1	Resistivity
4.1.2	Tolerances 13
4.1.3	Temperature Coefficient of Resistance 13
4.1.4	Power 13
4.1.5	Short-Time Overload Voltage (STOL) 14
4.1.6	Standard Working Voltage 14
4.1.7	ESD 14

4.2	General Process Design Guidelines	15
4.3	Material Process Guidelines	16
4.3.1	Additive Techniques - PTF Processing	17
4.3.2	Additive Techniques - Thin-Film	24
4.3.3	Additive Techniques - Inkjet Printing	24
4.3.4	Subtractive Techniques - Thin-Film Processing	25
4.4	Test and Trim	26
4.4.1	Electrical Testing Tools	27
4.4.2	Laser Trim [Subtractive]	27
4.4.3	Ink Jet [Additive]	30
5 E	MBEDDED CAPACITORS	31
5.1	Capacitance	31
5.1.1	Dielectric Constant	31
5.1.2	Capacitance Density	31
5.1.3	Dissipation Factor (Df)	31
5.1.4	Temperature Coefficient of Capacitance	32
5.1.5	Frequency and Voltage Effects	32
5.1.6	Leakage Current and Dielectric Breakdown	32
5.1.7	Aging	32
5.2	Matching Dielectric Materials to Embedded Capacitor Applications	32
5.3	Materials and Processes	34
5.3.1	Planar Capacitance Laminate Materials for Distributed and Discrete Applications	34
5.3.2	PTF Capacitance Materials	35
5.3.3	Ceramic Thick-Film Capacitor Systems	36
5.3.4	Ceramic Thin-Film Capacitor System	37
5.3.5	Ceramic-Filled Photodielectric (CFP)	39
6 IN	NDUCTORS	39
7 R	EFERENCES	40
8 IF	PC PUBLISHED PAPERS	41
8.1	IPC Printed Circuits Expo - March 2003	
8.2	IPC First International Conference on	
	Embedded Passives - June 2003	42
8.3	IPC Annual Meeting - September 2003	42
8.4	IPC Printed Circuits Expo, APEX and Designers Summit Conference - February 2004	42
8.5	IPC 2nd International Conference on Embedded Passives - June 2004	43
8.6	IPC/FED International Conference: Embedded Passive Components - November 2004	43

8.7	Electronics Circuits World Convention	
	(ECWC) 10 - February 2005	44
8.8	IPCWorks 2005 - October 2005	44

Figures

Figure 1-1	Discrete Passives 1
Figure 1-2	Passive Arrays 1
Figure 1-3	IPC, NEMI and JISSO Common Language for Embedded Components 2
Figure 1-4	Embedded Distributed Capacitor 3
Figure 1-5	Singulated Embedded Passives Construction
Figure 3-1	Embedded Passive Selection Process with Cost as a Driver
Figure 3-2	Embedded Passive Board Cost Tradeoff Model 10
Figure 3-3	Distribution of Fabricated Resistor Values 11
Figure 4-1	Effect of Squares on Resistance 13
Figure 4-2	Maximum Power Dissipation as a Function of Resistor Area for Thin-Film Material
Figure 4-3	Embedded Resistor Land Patterns on a Power or Ground Layer 15
Figure 4-4	Design Recommendations for Elements of the Resistor Pattern 15
Figure 4-5	Misregistration of Subtractive Metal Thin- Film Resistor Images
Figure 4-6	Thin-Film Additive Resistor Construction 16
Figure 4-7	Process Flow for PTF Additive Techniques 17
Figure 4-8	Subtractive Process 17
Figure 4-9	Four-Layer (1/2/1) HDI Printed Board with PTF Resistors on Layer 2 – Inset: PTF Printed Resistor
Figure 4-10	Typical Land Pattern for PTF Resistor
Figure 4-11	Annular Resistor 18
Figure 4-12	CV vs. Number of Prints 19
Figure 4-13	Linearity of Resistance vs. Resistor Length for Two PTF Inks and, for Comparison, an Alternative Resistor Technology
Figure 4-14	Relative Resistance (actual resistance/ theoretical resistance) as a Function of Resistor Length, for 0.25 mm-wide Resistors Printed Parallel to the Squeegee with 2 kohm/square ink
Figure 4-15	Relative Resistance (actual resistance/ theoretical resistance) as a Function of Resistor Width, for 0.25 mm- and 0.5 mm-long Resistors Printed Parallel to the Squeegee with 1 kohm/square ink
Figure 4-16	Effect of "Fingers" on Relative Resistance 21
Figure 4-17	Segmented Resistors for Improved Linearity of Resistance with Width 22
Figure 4-18	Percent Resistance Change after 600 h in 85/85 and 24 h in Air at 125 °C for 0.5 mm Wide Resistors Printed with 10 k Ω/\Box Ink and Terminated on Bare Copper and Silver and Nickel/Palladium Surface Finishes

Figure	4-19	Trimmed PTF Resistor	23
Figure	4-20	Resistor Layer of a Board with 56 Embedded Resistors Ranging from 10 Ω to 1.5 $M\Omega$	24
Figure	4-21	SEM Cross-Sectional View of Plated Resistor Embedded in a Test Board	24
Figure	4-22	Printed Linear Resistors	25
Figure	4-23	Printed Serpentines	25
Figure	4-24a	Laminated Innerlayer Core with Thin-Film Resistor on One Side	26
Figure	4-24b	Etch Copper and Define Width of Copper Traces	26
Figure	4-24c	Etch Exposed Resistor Material Down to Laminate and Define Resistor Width	26
Figure	4-24d	Etch Copper to Define Resistor Length	26
Figure	4-24e	Multilayer Embedding of the Resistor	26
Figure	4-25	Pretrim Target and Tolerances	27
Figure	4-26	Typical Large Panel Mother Board	28
Figure	4-27	Panelization of Small Printed Boards	28
Figure	4-28	Optimal Resistor Pattern	28
Figure	4-29	Test Pad Sizes and Spacing	29
Figure	4-30	Separations between Feature	29
Figure	4-31	Artwork Registration Challenges	29
Figure	4-32	A Section of Printed Board Innerlayer Panel with Ni-P Plated Resistors Trimmed by Ink Jet Printing of a Conductive Polymer	30
Figure	4-33	Guideline for Trimming Resistors By Varying Drop Pitch in Print Direction	30
Figure	4-34	Guideline for Trimming Resistors by Varying the Number of Print Passes	30
Figure	5-1	Types of Materials to Form Embedded Capacitors	33
Figure	5-2	Technology verses Application for Singulated Capacitors	33
Figure	5-3	Capacitance Range for Material Types	34
Figure	5-4	Sequential Lamination of a Single Layer Pair	34
Figure	5-5	Sequential Lamination of a Two Layer Pair	35
Figure	5-6	Noncopper Features of a Distributed Capacitance Power and Ground Plane	35
Figure	5-7	Process Flow for PTF Discrete Capacitors	36
Figure	5-8	Discrete PTF Capacitor Feature Size Tolerances	36
Figure	5-9	Process Flow: Thick-Film Capacitor	37
Figure	5-10	Process Flow: Thin-Film Ceramic Capacitor	38
Figure	5-11	CFP Mezzanine Capacitor Flow [1]	39
Figure	6-1	Single Layer Spiral Inductor on Organic Substrates	40
Figure	6-2	Multilayer 2.5-Turn Spiral Inductor	40
Figure	6-3	Computation of Inductance Using Empirical Expression	40

Tables

Table 3-1	Common Thick and Thin-Film Ceramic Technologies
Table 3-2	Passive Component Selection Criteria9
Table 5-1	Dielectric Constants for Various Materials 32
Table 5-2	Capacitance of Various Common Discrete Form Factors vs. Thickness and Dielectric Constant of Planar Capacitor Materials
Table 5-3	Capacitor Applications and Requirements 33

Design Guide for Embedded Passive Device Printed Boards

1 SCOPE

1.1 Statement of Scope This document is a guide to established and emerging embedded passive materials and technologies. It should not be used as an endorsement of any particular material or company product.

1.2 Purpose The purpose of this document is to give users and designers of printed boards the necessary information for incorporating embedded passive components into their applications. In addition, it also assists the user in understanding some of the physical and thermal characteristics of the embedded component materials so that their designs can achieve maximum stability and performance.

1.3 Terms and Definitions Terms and definitions shall be in accordance with IPC-T-50 and as stated herein.

Passive Components – Passive components usually refer to resistors, capacitors and inductors but can also include thermistors, varistors, transformers, temperature sensors, and almost any nonswitching analog device that perform the following functions:

- Provide or absorb energy to maintain a constant voltage or current.
- Filter signals to provide safe signals to other circuits.
- Control impedance.
- Sense signals to transmit information to other circuits.
- Delay or synchronize signals to provide timing to other circuits.

Discrete – A single passive element in its own leaded or surface mount technology (SMT) package. Figure 1-1 shows an example of a single resistor, capacitor, or inductor in a 0402 size (generally defined as a 1.0 mm by 0.5 mm [0.040 in by 0.020 in] package). The majority of discrete passives have two electrical contacts that are also used for soldering to the board.

Passive Array – A passive array comprises multiple passive components of like function, which are formed on the surface of a separate substrate and packaged in a single SMT case (see Figure 1-2). The case is then mounted on the primary interconnect substrate of the system. Examples include an array of capacitors or an array of resistors.

Passive Networks – Passive networks comprise multiple passive components of more than one function, which are formed on the surface of a separate substrate and packaged in a single SMT case. The case is then mounted on the pri-

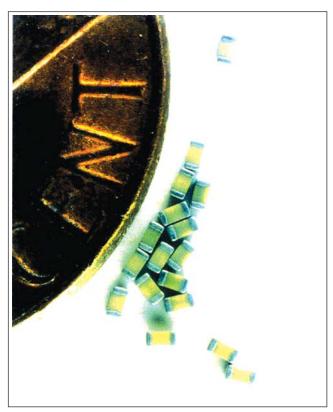


Figure 1-1 Discrete Passives

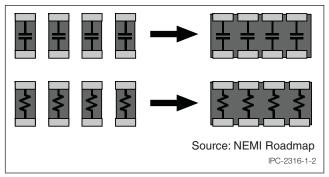


Figure 1-2 Passive Arrays

mary interconnect substrate of the system. These passive networks typically have some internal connections to form simple functions such as terminators or filters.

Integrated Passive Component – Multiple passive components that share a substrate and package. Integrated passive components may be housed inside the layers of the primary interconnect substrate, which would give them the subdesignation of an *embedded passive component*. Alternately, these components may be on the surface of a separate substrate that is then placed in an enclosure and