Design Standard for Printed Electronics on Flexible Substrates

Developed by the D-61 Printed Electronics Design Subcommittee of the D-60 Printed Electronics Committee of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 105N
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105
TABLE OF CONTENTS

1 SCOPE
- 1.1 Printed Electronics Types ... 1
- 1.2 Standard Printed Electronics Design 1
- 1.2.2 Standard Printed Electronic Design (SPED) 2
- 1.2.3 Standard Printed Electronic Design (SPED) Example 2
- 1.2.4 Standard Printed Electronics Design (SPED) Example 3
- 1.3 Definition of Requirements ... 3
- 1.4 Classification of Product .. 3

2 APPLICABLE DOCUMENTS
- 2.1 IPC ... 3
- 2.2 Joint Standards .. 4
- 2.5 NCSL International .. 4

3 GENERAL REQUIREMENTS
- 3.1 Terms and Definitions ... 4
- 3.1.1 Crease .. 4
- 3.1.2 Panelization .. 4
- 3.1.3 Substrate ... 4
- 3.1.4 Printed Electronics ... 4
- 3.1.5 Printed Electronics Process 5
- 3.2 Information Hierarchy .. 5
- 3.2.1 Order of Precedence ... 5
- 3.2.2 End-Product Performance Requirements 5
- 3.3 Design Considerations ... 5
- 3.4 Schematic/Logic Diagram .. 6
- 3.5 Density Evaluation ... 6
- 3.6 Parts List ... 6
- 3.7 Test Requirement Considerations 6
- 3.7.1 Electrical ... 6
- 3.7.2 Printed Electronic Assembly Testability 6
- 3.7.3 Functional Testing .. 10
- 3.7.4 Test Points and Connectors 10
- 3.8 Layout .. 10
- 3.8.1 Layout Design ... 10
- 3.8.2 Feasibility Density Evaluation 11

4 MATERIALS
- 4.1 Material Selection .. 11
- 4.1.2 Functional Conductive Material Options 13
- 4.2 Flex Applications ... 13
- 4.2.1 Stretch and Elongation ... 13
- 4.2.2 Crease and Crumple .. 13
- 4.2.3 Gap Bridging Applications 13
- 4.2.4 Via Hole Aspect Ratio/Material Deposit Aspect Ratio 13
- 4.2.5 Process Compatibility ... 14
- 4.2.6 Vertical Transition Angles 14
- 4.3 Materials Deposition Methods 14
- 4.3.1 Analog Printing Methods 17
- 4.3.2 Digital Printed Electronics Material Deposition Methods .. 17
- 4.3.3 Dispense Method Considerations 17
- 4.3.4 Contact Resistance .. 18
- 4.3.6 Ink-to-Substrate Compatibility 18
- 4.3.7 Ink Properties ... 18
- 4.4 Dielectric Materials .. 18
- 4.4.1 Dielectric Filaments ... 18
- 4.4.2 Dielectric Ink Materials .. 18
- 4.5 Adhesives ... 18
- 4.5.1 Liquid Adhesives ... 18
- 4.5.2 Flexible Adhesive Bonding Films (Dry-Film Adhesive) 18
- 4.5.3 Pressure-Sensitive Adhesives (PSAs) 19
- 4.6 Conductive Materials .. 19
- 4.6.1 Conductive Inks Functioning by Percolation 19
- 4.6.2 Conductive Filaments (Wires, Coated Wires or Conductive Filaments) 20
- 4.6.3 Conductive Filaments ... 20
- 4.6.4 Conformal Coating, Spray Coats 21
- 4.6.5 Printed Conductive Seed Layers for Plating (Print and Plate) .. 21
- 4.6.6 Conductive Interfaces and Out-of-Plane Interconnects 21
- 4.6.7 Isotropic Conductive Adhesives 21
- 4.6.8 Anisotropic Conductive Adhesives 21
- 4.7 Operations Following Plating 21
- 4.8 Coatings .. 21
- 4.8.1 Carbon for Printed Ag ... 21
- 4.8.2 Conductive Coatings for Shielding 21
- 4.8.3 Organic Protective Coatings 21
- 4.8.4 Conformal Coating, Spray Coats 21
- 4.9 Other Cover Materials ... 21
- 4.9.1 Coverlay .. 22
- 4.9.2 Coverfilm ... 22
- 4.9.3 Covercoat .. 22
- 4.10 Other Printed Materials .. 22
- 4.11 Marking and Legend .. 22

5 MECHANICAL AND PHYSICAL PROPERTIES
- 5.1 Fabrication Requirements ... 22
- 5.1.1 Printed Flex Fabrication – Sheet Form 22
- 5.1.2 Printed Flex Roll-to-Roll Fabrication 22
- 5.2 Product/Printed Flex Configuration 22
- 5.2.1 Circuit Profile (Outline) 22
- 5.2.2 Flexible Areas .. 23
- 5.2.3 Forming Bends ... 25
6 ELECTRICAL PROPERTIES ... 26
 6.1 Electrical Considerations 26
 6.2 Conductive Material Requirements 27
 6.3 Electrical Clearance ... 27
 6.4 Impedance Controls ... 28
 6.5 Formed Components ... 28
 6.5.1 Formed Resistors ... 28
 6.5.2 Formed Capacitors ... 28
 6.5.3 Formed Inductors ... 29
 6.5.4 Formed Active Components 29

7 THERMAL MANAGEMENT ... 29
 7.1 Cooling Mechanisms ... 29
 7.2 Heat Dissipation Considerations 31

8 COMPONENT AND ASSEMBLY ISSUES 31
 8.1 Lands for Surface-Mount Components 32
 8.2 Constraints on Mounting to Flexible Sections 32
 8.3 General Placement Requirements 32
 8.3.1 Automatic Assembly ... 32
 8.3.2 Orientation .. 33
 8.3.3 Accessibility .. 33
 8.3.4 Design Envelope ... 33
 8.3.5 Flush Mounting Over Conductive Areas 34
 8.3.6 Clearances .. 34
 8.3.7 Physical Support ... 34
 8.4 General Attachment Requirements 34
 8.4.1 Thermal Processing Considerations 34
 8.4.2 Fastening Hardware ... 34
 8.4.3 Stiffeners .. 34
 8.4.4 Wire Assembly .. 34
 8.4.5 Bus Bar ... 35
 8.4.6 Component Selection Considerations 35

9 HOLES/INTERCONNECTIONS 36
 9.1 Printed Land Requirements 36
 9.2 Holes .. 36
 9.2.1 Unsupported Holes .. 36
 9.2.2 Printed Through-Holes 36

10 DOCUMENTATION .. 36
 10.1 Special Tooling ... 37
 10.2 Layout .. 37
 10.2.1 Viewing .. 37
 10.2.2 Accuracy and Scale .. 37
 10.2.3 Model and Drawing Notes 37
 10.2.4 Automated-Layout Techniques 37
 10.3 Deviation Requirements 38
 10.4 Phototool Considerations 38
 10.4.1 Artwork Master Files 38
 10.4.2 Coating Phototools ... 38

11 QUALITY ASSURANCE ... 38
 11.1 Material Quality Assurance 38
 11.2 Statistical Process Control (SPC) 38
 11.3 Build and Manufacturing Controls 39
 11.4 Conformance Test Coupons 39
 11.4.1 Individual Coupon Design 39
 11.4.2 Coupon Quantity and Location 39
 11.4.3 Process Control Test Coupon 39
 11.4.4 Coupon Identification 40
 11.5 Responsibility for Inspection 40
 11.6 Test Equipment and Inspection Facilities 40
 11.7 Preparation of Samples 40
 11.8 Standard Laboratory Conditions 40
 11.9 Tolerances .. 40
 11.10 Qualification Inspection 40
 11.11 Failures ... 40
 11.12 User Sampling Plan .. 40
 11.13 Noncompliance ... 40
 11.14 Reduction of Quality Conformance Testing 40
 11.15 Inspection Methodology 40
 11.15.1 Process Verification Inspection 40
 11.15.2 Visual Inspection ... 41
 11.15.3 Magnification Aids 41
 11.15.4 Acceptance and Test Activities 41
 11.16 Storage Conditions .. 41

APPENDIX A Fabrication and Design
Features Benefits and Drawbacks 42

APPENDIX B Testability Requirements
Considerations and Design Complexity 51
 B.1 Test Requirement Considerations 51
 B.2 Design Complexity ... 51
 B.3 Test Equipment Interfaces 51
 B.4 Circuit Test Methods ... 51
APPENDIX C Sample Layout Views for Printed Electronic Designs ... 53

Figures

Figure 1-1 Standard Printed Electronic Design (SPED) 1 2
Figure 1-2 Standard Printed Electronic Design (SPED) 2 2
Figure 1-3 Standard Printed Electronics Design (SPED) 3 2
Figure 1-4 Example of Printed Electronic Using Every Standard Printed Electronic Design (SPED) Type in One Device 3
Figure 3-1 Rounded Probe and Pin Probe 9
Figure 4-1 Cross-Sectional View of a Representative Construction Identifying Material Types 11
Figure 4-2 Meander Pattern 13
Figure 4-3 Hole Aspect Ratio 14
Figure 4-4 Material Deposit Aspect Ratio 14
Figure 4-5 Printed Conductive Network and Microstructure for Polymer Thick Film (PTF) Inks (Top) and Metalorganic Inks (Bottom) 20
Figure 5-1 Circuits Nested on a Panel Sheet 22
Figure 5-2 Relief Radii 23
Figure 5-3 Material Added for Increased Tear Resistance 23
Figure 5-4 Conductors in Bend Areas 24
Figure 5-5 Neutral Axis Ideal Construction 24
Figure 5-6 Irregular Folds 25
Figure 6-1 Voltage/Ground Distribution Concepts 26
Figure 8-1 Printed Conductor-to-Hole Interface 34
Figure 8-2 Two Examples of Ramps 36
Figure 11-1 Systematic Path for Implementation of Statistical Process Control (SPC) 39
Figure B-1 In-Circuit Test (ICT) Pads 51
Figure B-2 Connectors/Tails 51
Figure B-3 Test Header Pins 51
Figure B-4 Example of Test Starting Points 52

Tables

Table 3-1 Comparisons of Test and Inspection Methods 10
Table 4-1 Characteristics of Analog Printing Processes 15
Table 6-1 Electrical Conductor Spacing Guidelines 28
Table 7-1 Effects of Material Type on Construction 30
Table 7-2 Emissivity Ratings for Certain Materials 30
DESIGN STANDARD FOR PRINTED ELECTRONICS
ON FLEXIBLE SUBSTRATES

1 SCOPE
This standard establishes specific requirements for the design of printed electronic applications and their forms of component mounting and interconnecting structures on flexible substrates. Flexible substrates, as pertain to this standard, are materials or devices which have some amount of flexibility or bendability (not rigid) but are not considered to be stretchable (e.g., fabrics, textiles, stretchable polymers, etc.).

1.1 Printed Electronics Types Any printed electronics design will be incumbent on requirements from the customer, materials to be used and the printing processes. The following printed electronics types represent the known variations of printed electronics. These types cover all known processes for printing electronics (e.g., screen, aerosol, 3D, etc.). As other types or printing processes are made known, they will be added to this standardized list of types.

The printed electronics type shall be specified on the procurement document as agreed upon between user and supplier (AABUS). If the printed electronics type is not designated below, a unique type designation will be used.

- **Printed electronics — Type 1**: Using printed electronics processes on a planar substrate
- **Printed electronics — Type 2**: Using printed electronics processes on a nonplanar substrate
- **Printed electronics — Type 3**: Using printed electronics processes to fully build and functionalize a device in a 3D space (no starting substrate)

1.2 Standard Printed Electronics Design (SPED) Classifications Standard print electronics design (SPED) types shall be in accordance with 1.2.1 through 1.2.3. For purposes of explanation, a basic variation of each SPED is shown in 1.2.1 through 1.2.3.

Each IPC-2292 SPED consists of the following components:

- **Substrate** — Any flexible nonconductive and/or conductive (e.g., flexible printed board or other manufactured functional part) material
- **Printed element** — Any conductive, semiconductive or dielectric material applied using additive/printing processes
- **Surfaces** — Top and bottom sides of the substrate
 - First surface is top
 - Second surface is bottom

Each additive process required to manufacture the finished flexible printed electronic is identified by an alphanumeric designation. The letter F (first/top surface) or S (second/bottom surface) indicates the side of the substrate. The number indicates the print/process step.

For example:

- F1 = first print on the first/top surface
- F2 = second print on the first/top surface
- S1 = first print on the second/bottom surface
- S2 = second print on the second/bottom surface

It is important to note that the print/process step numbers can be repeated on each side, because the numbers only apply to printing elements on a specific side.

1.2.1 Standard Printed Electronic Design (SPED) 1 SPED 1 has printed element(s), which can include vias between printed conductive elements, on one or both surfaces of a substrate. SPED 1 does not have electrical/electronic interconnections from printed element(s) to the substrate.