

IPC/JPCA-2291

Design Guideline for Printed Electronics

Developed by the Printed Electronics Design Subcommittee (D-61) of the Printed Electronics Committee (D-60) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC 3000 Lakeside Drive, Suite 309S Bannockburn, Illinois 60015-1249 Tel 847 615.7100 Fax 847 615.7105 June 2013 IPC/JPCA-2291

Table of Contents

1 SCOPE			4 DESIGN PROCESS FLOW 5	
1.1	Purpose	1	4.1 Printed	d Electronics Design Process Flow Stages 5
1.2	Intent	1	4.1.1 Function	on and Purpose Definition 6
1.3	Printed Electronics Document Hierarchy	1	4.1.2 Perform	mance Specifications
1.4	Qualification	2	4.1.3 Materi	als Selections
1.5	Procurement Documentation	2	4.1.4 Design	and Architecture9
1.6	As Agreed Upon Between User and Supplier		_	acturing Process Layout
	(AABUS)			analysis
1.7	Interpretation			Device, Module and Unit, and Product 21
1.8	Presentation	2		
2 A	PPLICABLE DOCUMENTS	2		
2.1	IPC	2	5.1 Data C	Conversion Initiative Background
2.2	NCSL International	2	6 REFEREN	NCES
2.3	ISO	2		Figures
3 TE	ERMS AND DEFINITIONS	3	Figure 1-1	Hierarchy for IPC/JPCA Printed
3.1	base material*	3	rigure 1-1	Electronics Documents
3.2	barrier	3	Figure 1-2	Future Hierarchy for IPC/JPCA
3.3	fiducial mark	3		Printed Electronics Documents 1
3.4	functional biologically active material	3	Figure 4-1	Printed Electronics Design Process Flow 5
3.5	functional chemically active material	3	Figure 4-2	Base Materials Family Designation 8
3.6	functional conductive material		Figure 4-3a	Single Layer – Single-Sided Topology 9
3.7	functional dielectric material	3	Figure 4-3b	Single Layer – Single-Sided Topology
3.8	functional material		Figure 4-4a	Single Layer – Single-Sided with Printed Jumpers Topology
3.9	functional optically active material	3	Figure 4-4b	Single Layer – Single-Sided with Printed
3.10	functional semiconductive material	3	_	Jumpers Topology 10
3.11	functional thermally active material	4	Figure 4-5a	Single Layer – Double-Sided Topology 11
3.12	hybrid structure	4	Figure 4-5b	Single Layer – Double-Sided Topology 11
3.13	in-body		Figure 4-6a	Multiple Layer - Single-Sided Topology 12
3.14	nonfunctional material		Figure 4-6b	Multiple Layer - Single-Sided Topology 12
3.15	nonprinted conductor	4	Figure 4-7a	Multiple Layer - Double-Sided Topology 14
3.16	on-body		Figure 4-7b	Multiple Layer - Double-Sided Topology 14
3.17	printed electronics based devices		Figure 4-8	Definitions of Printed Layer and Feature
3.18	printed electronics based material		Fig 4 0 -	Attributes
3.19	printed electronics based process		Figure 4-9a	Hybrid Single Layer – Single-Sided Topology17
3.20	printed electronics based final products		Figure 4-9b	Hybrid Single Layer – Single-Sided
3.21	printed electronics based modules and units			Topology
3.22	printed electronics through-hole		Figure 4-10a	Hybrid Multiple Layer – Single-Sided
3.23	printed electronics via		Figure 4.405	Topology
3.24	surface finish		Figure 4-10b	Hybrid Multiple Layer – Single-Sided Topology17

Figure 4-11	Hybrid Structure – Printed Component with Nonprinted Microelectronics Topology18
Figure 4-12	Example Printed Electronics Manufacturing Process Layout
Figure 4-13	Design Data Conversion Flow21
Figure 4-14	Design Data Verification Flow 22
	Tables
Table 4-1	Printed Electronics – Design for Purpose 6
Table 4-2	Performance Specifications 7
Table 4-3	Printed Electronics Materials 8
Table 4-4	Single Layer - Single-Sided Design 9
Table 4-5	Single Layer – Single-Sided with Jumper Design10
Table 4-6	Single Layer – Double-Sided Design11
Table 4-7	Multiple Layer - Single-Sided Design 13
Table 4-8	Multiple Layer - Double-Sided Design 15
Table 4-9	Interfaces and Interconnects 15
Table 4-10	Single Layer – Single-Sided Hybrid Structure Design17
Table 4-11	Multiple Layer – Single-Sided Hybrid Structure Design18
Table 4-12	Manufacturing Process Layout Parameters 18
Table 4-13	Processing Technologies and Testing Parameters19
Table 4-14	Cost Analysis Parameters 20
Table 4-15	Design Data to Fabricate Printed Structures

June 2013 IPC/JPCA-2291

DESIGN GUIDELINES FOR PRINTED ELECTRONICS

1 SCOPE

This guideline provides an overview of the design process flow for printed electronics based devices, modules and units, and final products.

- **1.1 Purpose** The purpose is to present the framework of the design process flow for individuals to manufacture printed electronics based devices, modules and units, and final products.
- **1.2 Intent** The intent of IPC/JPCA-2291 is to establish a design process flow that will facilitate and improve the practice of printed electronics design. IPC/JPCA-2291 identifies documents such as standards that can be used to assist during the design process flow. In general IPC/JPCA-2291 contains generic information that is sufficient for printed electronics design by the product designer.

The subcommittee members that developed IPC/JPCA-2291 acknowledge that individual companies may require additional information than that reported within this document. Therefore, IPC/JPCA-2291 and documents specified within it may only reflect a subset of those required by members of the supply chain.

IPC/JPCA-2291 is "generic" because it specifies only information which forms the basis for further specific declarations. It is therefore intended to be used in conjunction with other documents as needed. Also, part of the intent is to provide mechanisms for securing the integrity of the information exchanged between supply chain members.

1.3 Printed Electronics Document Hierarchy The IPC/JPCA printed electronics standards development subcommittees have established a hierarchy as presented in Figure 1-1 based on the existing initiatives. It was structured to enable the greatest flexibility for the emerging field of printed electronics. The subcommittees plan to revisit it frequently and modify it as necessary during the growth of the field and technologies transition from R&D to commercialization.

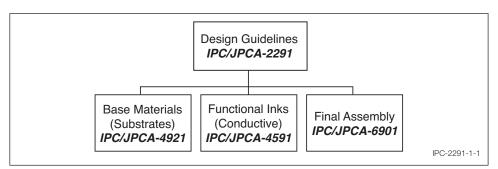


Figure 1-1 Hierarchy for IPC/JPCA Printed Electronics Documents

As the documents listed in Figure 1-1 are completed, new standards projects may be undertaken by the subcommittees. Proposed projects will be listed as shown in Figure 1-2; a project was proposed that addresses manufacturing processes and platforms. In addition to initiating new project topics, subcommittees may also be actively preparing a revision of a previously approved standard based on recent subcommittee member comments as well as general industry trends.

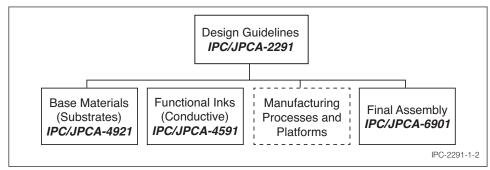


Figure 1-2 Future Hierarchy for IPC/JPCA Printed Electronics Documents