Design Guide for the Packaging of High Speed Electronic Circuits

Developed by the IPC-2251 Task Group (D-21a) of the High Speed/High Frequency Committee (D-20) of IPC

Supersedes:
IPC-D-317A - January 1995
IPC-D-317 - April 1990

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
Table of Contents

1 GENERAL .. 1
 1.1 Purpose ... 1
 1.2 Scope .. 1
 1.3 Symbology, Terms and Definitions 1
 1.3.1 Symbology .. 1
 1.3.2 Terms and Definitions 2
 1.4 Units .. 6

2 APPLICABLE DOCUMENTS 6

3 OVERVIEW .. 6
 3.1 Decision Making Process 6
 3.2 Design Options ... 7
 3.2.1 System Electrical/Mechanical Constraints 7
 3.2.2 Signal Integrity Design Constraints 8
 3.2.3 System Electrical/Mechanical Requirements 9
 3.3 Mechanical Requirements 9
 3.3.1 Circuit Board .. 10
 3.3.2 Hybrid ... 10
 3.3.3 Component Packaging 10
 3.3.4 Thermal Management 10
 3.3.5 Component Mounting 10
 3.4 Electrical Considerations 10
 3.4.1 Power Distribution 10
 3.4.2 Permittivity .. 10
 3.4.3 Capacitive Versus Transmission Line Environment .. 11
 3.4.4 Propagation Time 11
 3.4.5 Characteristic Impedance 11
 3.4.6 Signal Loading Effects 11
 3.4.7 Crosstalk .. 12
 3.4.8 Signal Attenuation 12

4 MECHANICAL CONSIDERATIONS 12
 4.1 Printed Board .. 12
 4.1.1 Substrate Materials 12
 4.2 Component Packaging 14
 4.2.1 Device ... 14
 4.2.2 Connectors ... 14
 4.2.3 Cables ... 15
 4.3 Thermal Considerations 15
 4.3.1 System Level Impacts 15
 4.3.2 Board Level Impacts 15
 4.3.3 Device Level Impacts 16
 4.4 Component Placement 17
 4.4.1 Crosstalk Management 17
 4.4.2 Impedance Control 17
 4.4.3 Power Distribution 18
 4.4.4 Thermal Management 18
 4.4.5 System Cost .. 18

5 ELECTRICAL CONSIDERATIONS 18
 5.1 Power Distribution .. 18
 5.1.1 System DC Model .. 18
 5.1.2 Power Plane Impedance 19
 5.1.3 Integrated Circuit Decoupling 20
 5.1.4 Decoupling Capacitance and Plane Capacitance .. 22
 5.1.5 Device Power Dissipation 25
 5.2 Permittivity .. 25
 5.2.1 Relative Permittivity 25
 5.2.2 Effective Relative Permittivity 25
 5.2.3 Frequency Dependence 26
 5.3 Lumpede Capacitance Versus Transmission Line Environment .. 28
 5.4 Propagation Delay Time 30
 5.4.1 Capacitive Line .. 30
 5.4.2 Transmission Line 30
 5.5 Impedance Models ... 31
 5.5.1 Microstrip .. 31
 5.5.2 Embedded Microstrip 32
 5.5.3 Centered Stripline 33
 5.5.4 Dual-Stripline ... 33
 5.5.5 Differential Pair Conductors 34
 5.6 Loading Effects ... 36
 5.6.1 Termination Resistors 36
 5.6.2 Reflections ... 36
 5.6.3 Minimum Separation 36
 5.6.4 Distributed Loading 38
 5.6.5 Lumped Loading 39
 5.6.6 Radial Loading ... 40
 5.7 Crosstalk ... 44
 5.7.1 Model .. 44
 5.7.2 Microstrip Transmission Line 46
 5.7.3 Embedded Microstrip Transmission Line 46
 5.7.4 Backward Crosstalk Amplitudes 46
Figure 5-5 Capacitive and Transmission Line Current Pulses – A) is for a very short line and B) is for a long line .. 21
Figure 5-6 Fourier Transform .. 22
Figure 5-7 Capacitor Equivalent Circuit 23
Figure 5-8 (a) through (m) Typical Impedance Structures 27
Figure 5-9 ε, and tan δ versus frequency for FR-4 28
Figure 5-10 Capacitive Loading .. 30
Figure 5-11 Wire Over Reference Plane 31
Figure 5-12 Flat Conductor Surface Microstrip 32
Figure 5-13 Flat Conductor Embedded Microstrip 32
Figure 5-14 Flat Conductor Centered Stripline 33
Figure 5-15 Wire Conductor Centered Stripline 33
Figure 5-16 Flat Conductor Dual Stripline (Asymmetrical Signals) .. 34
Figure 5-17 Wire Conductor Differential Centered Stripline 34
Figure 5-18 Flat Conductor Shielded Broadside Coupled Differential Stripline .. 35
Figure 5-19 Flat Conductor Nonshielded Broadside Coupled Differential Stripline .. 35
Figure 5-20 Flat Conductor Shielded Edge Coupled Differential Stripline .. 35
Figure 5-21 Flat Conductor Shielded Edge Coupled Differential Dual Stripline .. 35
Figure 5-22 Flat Conductor Edge Coupled Differential Surface Microstrip .. 36
Figure 5-23 Flat Conductor Edge Coupled Differential Embedded Microstrip ... 36
Figure 5-24 Net Illustrating Point Discontinuity Waveforms .. 37
Figure 5-25 Addition of Two Pulses Traveling Opposite Directions .. 37
Figure 5-26 Distributed Line .. 38
Figure 5-27 Lumped Loading ... 39
Figure 5-28 Short Distributively Loaded Cluster 39
Figure 5-29 a) Lumpede Loaded Transmission Line
 b) Equivalent Model .. 39
Figure 5-30 Waveforms for a Lumpede Capacitive Load 39
Figure 5-31 Lumpede Transmission Line 40
Figure 5-32 Radial Loading .. 40
Figure 5-33 Example Configuration 40
Figure 5-34 Example of Radial Line 41
Figure 5-35 Net Configuration ... 41
Figure 5-36 Bus Configuration ... 41
Figure 5-37 Wired-AND Configuration 42
Figure 5-38 Multiple Reflections In A Transmission Line Between Two TTL Inverters 43
Figure 5-39 Equivalent Circuit Example (top) with Corresponding Lattice Diagram (bottom) 44
Figure 5-40 Predicted Driver (A) and Load (B)
 Waveforms for Figure 5-39 .. 44
Figure 5-41 Induced Crosstalk Voltages 45

Appendix A .. 55
Appendix B ... 76
Appendix C ... 80
Appendix D ... 82

6 PERFORMANCE TESTING .. 52
6.1 Impedance Testing ... 52
6.1.1 Principle of Impedance Testing Using a TDR 52
6.1.2 Impedance Measuring Test Equipment 52
6.2 Impedance Test Structures and Test Coupons 52
6.2.1 Test Structure Design .. 52
6.2.2 Test Probes and Connections 53
6.2.3 Locating Impedance Test Structures 53
6.2.4 A Simple Impedance Test Method 53
6.3 Stripline Impedance Test Coupon 53

5.11.3 Suggested EMI Layout Practices 50
5.11.2 Digital Edge Rates .. 50
5.11.1 Reasons for Considering EMI Layout 49
5.10.3 Connector Types ... 49
5.10.2 Distributed Line Compensations 49
5.10.1 Sensitivity .. 49
5.10 Connectors ... 49
5.9 Computersimulation Program 49
5.8.3 Rise Time Degradation 48
5.8.2 Dielectric Losses .. 48
5.8.1 Resistive Losses (Skin Effect) 47
5.8 Signal Attenuation ... 47
5.7.6 TTL/MOS Models .. 47
5.7.5 Stripline .. 46
5.7.4 Distributed Line ... 46
5.7.3 Connected Line ... 46
5.7.2 Lumped Line .. 46
5.7.1 General Electric Definition 46
5.7 Connectors .. 46
5.6.3 Capacitive Loading .. 45
5.6.2 Differential Loading .. 45
5.6.1 General Loading ... 45
5.6 Loaders ... 45
5.5 Soldering ... 45
5.4.3 Digital Edge Rates .. 44
5.4.2 Distributed Line Compensations 44
5.4.1 Sensitivity ... 44
5.4 Connectors .. 44
5.3.3 Impedance Measuring Test Equipment 44
5.3.2 Impedance Test Structures and Test Coupons 44
5.3.1 Test Structure Design .. 44
5.3 Test Probes and Connections 44
5.2.3 Locating Impedance Test Structures 44
5.2.2 A Simple Impedance Test Method 44
5.2.1 Impedance Test Structures and Test Coupons 44
5.2 Impedance Test Structures and Test Coupons 44
5.1.2 Impedance Measuring Test Equipment 44
5.1.1 Principle of Impedance Testing Using a TDR 44
5.1 Impedance Testing .. 44

6.3 Stripline Impedance Test Structure Model 53
1 GENERAL

1.1 Purpose The object of this document is to provide guidelines for the design of high-speed circuitry. The subjects presented here represent the major factors that may influence a high-speed design. This guide is intended to be used by circuit designers, packaging engineers, circuit board fabricators, and procurement personnel so that all may have a common understanding of each area.

1.2 Scope The goal in electronic packaging is to transfer a signal from one device to one or more other devices through a conductor. Considerations include electrical noise, electromagnetic interference, signal propagation time, thermo-mechanical environmental protection, and heat dissipation. High-speed designs are defined as designs in which the interconnecting properties affect circuit function and require consideration. Every electrical concept has relevant physical implementation data and limitations provided to match the electrical and mechanical relationships. This guideline presents first order approximations for each of the subject areas covered. If more detail is required, the papers presented in the bibliography may provide more detailed supplemental data. Since most high speed design requires signal integrity and EMI techniques, often field solvers, signal integrity simulation tools, EMI/EMC simulation programs may be required for resolving design challenges. Many PWB layout design tools include these tools as options to their programs. These simulators are driven by SPICE, IBIS, or other models. References to manufacturers of these tools may be found on the IPC Web site (www.ipc.org).

1.3 Symbology, Terms and Definitions

1.3.1 Symbology

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABT</td>
<td>Advanced Bipolar-CMOS Technology</td>
</tr>
<tr>
<td>AC</td>
<td>Advanced CMOS</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Current (Time varying current)</td>
</tr>
<tr>
<td>ACQ</td>
<td>Advanced CMOS Quiet</td>
</tr>
<tr>
<td>ACT</td>
<td>Advanced CMOS TTL Compatible</td>
</tr>
<tr>
<td>ACTQ</td>
<td>Advanced CMOS TTL Compatible Quiet</td>
</tr>
<tr>
<td>AGP</td>
<td>Advanced Graphics Port Logic</td>
</tr>
<tr>
<td>AHC</td>
<td>Advanced High-Speed CMOS</td>
</tr>
<tr>
<td>AHCT</td>
<td>Advanced High-Speed CMOS TTL Compatible</td>
</tr>
<tr>
<td>ALS</td>
<td>Advanced Low Power Schottky Technology</td>
</tr>
<tr>
<td>AS</td>
<td>Advanced Schottky Technology</td>
</tr>
<tr>
<td>BCT</td>
<td>Bipolar-CMOS Technology</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complimentary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>COB</td>
<td>Chip-On-Board</td>
</tr>
<tr>
<td>CTE</td>
<td>Coefficient of Thermal Expansion</td>
</tr>
<tr>
<td>CTE_{xy}</td>
<td>X and Y-Axis Coefficient of Thermal Expansion</td>
</tr>
<tr>
<td>CTE_{z}</td>
<td>Z-Axis Coefficient of thermal expansion</td>
</tr>
<tr>
<td>CTT</td>
<td>Center Tap Terminated Logic</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DIP</td>
<td>Dual In-line Package</td>
</tr>
<tr>
<td>DWB</td>
<td>Discrete Wiring Board</td>
</tr>
<tr>
<td>dV/dT</td>
<td>Delta Voltage/Delta Time (Edge Slew Rate)</td>
</tr>
<tr>
<td>ECL</td>
<td>Emitter Coupled Logic</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>ESD</td>
<td>Electro-Static Discharge</td>
</tr>
<tr>
<td>F</td>
<td>Fast Bipolar Logic Technology</td>
</tr>
<tr>
<td>FR-4</td>
<td>Flame Retardant Level 4, Epoxy Glass Dielectric Material</td>
</tr>
<tr>
<td>GaAs</td>
<td>Gallium Arsenide Technology</td>
</tr>
<tr>
<td>GTL</td>
<td>Gunning Transceiver Logic</td>
</tr>
<tr>
<td>GTL+</td>
<td>Gunning Transceiver Logic Plus</td>
</tr>
<tr>
<td>HC</td>
<td>High-Speed CMOS Technology</td>
</tr>
<tr>
<td>HCT</td>
<td>High-Speed CMOS TTL Compatible</td>
</tr>
<tr>
<td>HL</td>
<td>High-to-Low Signal Edge Transition</td>
</tr>
<tr>
<td>HSTL</td>
<td>High-Speed Transceiver Logic</td>
</tr>
<tr>
<td>IBIS</td>
<td>I/O Buffer Information Specification</td>
</tr>
<tr>
<td>IBuf</td>
<td>Input Buffer</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>K_B</td>
<td>Backward Crosstalk</td>
</tr>
<tr>
<td>K_F</td>
<td>Forward Crosstalk</td>
</tr>
<tr>
<td>L_G</td>
<td>Ground Plane Inductance</td>
</tr>
<tr>
<td>L_H</td>
<td>Low-High Signal Edge Transition</td>
</tr>
<tr>
<td>L_P</td>
<td>Power Plane Inductance</td>
</tr>
<tr>
<td>LVDS</td>
<td>Low Voltage Differential Signalling</td>
</tr>
<tr>
<td>LLEVEL</td>
<td>Low Voltage ECL</td>
</tr>
<tr>
<td>LVPECL</td>
<td>Low Voltage PECL</td>
</tr>
<tr>
<td>LVCMOS</td>
<td>Low Voltage CMOS Technology</td>
</tr>
<tr>
<td>LVT</td>
<td>Low Voltage Technology</td>
</tr>
</tbody>
</table>