DFX Guidelines

Developed by the DFX Standards Subcommittee (1-14) of the Printed Board Design Committee (1-10) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
Table of Contents

1 SCOPe .. 1
1.1 Purpose ... 1
1.2 Goals of This Document 1
1.3 Limitations of This Document 1

2 APPLICABLE DOCUMENTS .. 1
2.1 IPC ... 1
2.2 SAE International .. 2
2.3 JEDEC .. 2
2.4 IEEE ... 2
2.5 Government ... 2

3 TERMS AND DEFINITIONS 3

4 OVERVIEW OF DESIGN FOR EXCELLENCE (DFx) PRACTICES .. 4
4.1 Design for Manufacturing (DFM) 4
4.2 Printed Board Design for Fabrication (DFF) 4
4.3 Design for Assembly (DFA) 5
4.4 Design for Test/Testability (DFT) 5
4.5 Design for Cost (DFC) .. 5
4.6 Design for Reliability (DFR) 5
4.7 Design for Environment (DFE) 6
4.8 Design for Reuse .. 6

5 PRINTED BOARD ASSEMBLY DESIGN PROCESS 6
5.1 Overview ... 6
5.2 Concept Design and Analysis 6
5.2.1 Overview .. 6
5.2.2 Inputs .. 7
5.2.3 Tasks .. 7
5.2.4 Outputs ... 7
5.3 Detailed Design .. 7
5.3.1 Overview .. 7
5.3.2 Inputs .. 7
5.3.3 Tasks .. 8
5.3.4 Outputs ... 8
5.4 Design Release ... 8
5.4.1 Overview .. 8
5.4.2 Inputs .. 8
5.4.3 Tasks .. 8
5.4.4 Outputs ... 9
5.5 First Build Support .. 9
5.5.1 Overview .. 9
5.5.2 Inputs .. 9
5.5.3 Tasks .. 9
5.5.4 Outputs ... 9
5.6 Product Validation ... 9
5.6.1 Overview .. 9
5.6.2 Inputs .. 9
5.6.3 Tasks .. 9
5.6.4 Outputs ... 9
5.7 Support .. 10
5.7.1 Overview .. 10
5.7.2 Inputs .. 10
5.7.3 Outputs ... 10
5.7.4 Support ... 10

6 BOARD ASSEMBLY PROCESSES 10
6.1 Scope .. 10
6.2 Solder Mask .. 10
6.3 Components ... 10
6.4 Panel/Array .. 10
6.5 Clearance ... 10
6.6 Component Placement/Mounting 11
6.7 Thermal Pad Outgassing 11
6.8 Fiducials ... 12
6.9 Tooling ... 12
6.10 Heat Sensitive Components 12
6.10.1 Copper Flooding and Thermal Relief 12
6.10.2 Heat Sensitive Components 12
6.10.3 Assembly Effects on Printed Board Assembly Materials 13
6.10.4 Moisture Sensitivity 13
6.11 Surface Mount Paste Printing 13
6.12 Machine Soldering ... 13
6.12.1 Single Point Automated Soldering Systems 13
6.12.2 Reflow Soldering ... 13
6.12.3 Convection Reflow 13
6.12.4 Vapor Phase Reflow 13
6.12.5 Pin in Paste/Paste in Hole/Intrusive Soldering 14
6.12.6 Wave Soldering .. 14
6.12.7 Selective Soldering/Point-to-Point Soldering ... 14
6.12.8 Point-to-Point Soldering 14
6.12.9 Selective Dip Soldering 14
6.13 Laser Soldering ... 14
6.14 Manual/Rework Soldering 14
6.14.1 Soldering Iron .. 14
6.14.2 Vacuum Tipped Soldering Iron 14
6.14.3 Hand Hot Air/Gas Soldering 15
6.14.4 BGA/Area Array Rework 15
6.14.5 Mini-Pot (Solder Fountain) Wave Rework 15
6.15 Cleaning .. 15
6.16 Underfill .. 15
6.17 Conformal Coating .. 16
6.18 Design Guidelines for System Enclosures/Box Builds .. 16
7 DESIGN FOR TESTABILITY (DFT) 17
7.1 Conceptual Design .. 17
7.2 Preliminary Design – Block Diagram 17
7.3 Detailed Circuit Design ... 18
7.4 DFT Considerations .. 18
7.4.1 Design for Testability Metrics 19
7.5 Support ... 19
7.6 Prognostics and Health Management 20
7.7 References .. 20
7.7.1 IEEE Standards for DFT .. 20
7.7.2 Industry Standards and Guidelines 20
7.7.3 Military Standards and Guidelines 20
7.7.4 Commercially Available DFT Guidelines 20
8 DESIGN FOR COST ... 20
8.1 Bill of Material (BOM) Costs 20
8.2 Printed Board and Assembly Costs 21
8.3 Sustaining Costs .. 21
8.4 Test Costs ... 21
8.5 Rework and Repair Costs 21
9 DESIGN FOR RELIABILITY 22
9.1 Physics of Failure / Reliability Physics 22
9.2 Solder Joint Reliability ... 23
9.3 Tin Whisker Risk Considerations 23
9.4 CTE of Common Materials (CTE) 23
9.5 Comparative Reliability Matrix 23
10 DESIGN FOR THE ENVIRONMENT 26
10.1 Sustainability .. 26
10.2 Materials .. 26
10.3 Regulatory ... 26
10.3.1 End-of-Life ... 26
10.3.2 Life Cycle Assessments 26
11 DESIGN FOR REUSE ... 27
11.1 Designing for Reuse within an Organization 27
11.2 Designing for Reuse by Third Parties 27
12 CHECK LISTS COMPARISONS 28
13 ACRONYMS .. 43

Figures
Figure P-6 Plated-Through-Hole (PTH) 3
Figure 9-1 Well Wetted Through-Hole Solder Joint 25
Figure 9-2 Well Wetted Surface Mount Discrete Solder Joint .. 25
Figure 9-3 Well Wetted Surface Mount J-Lead Joints 25
Figure 9-4 Well Wetted Surface Mount BGA Solder Joints ... 25

Tables
Table 7-1 Design and Testability Activities Integrated During Various Phases of Product Development .. 17
Table 9-1 Cyclic Services Environment over Design Life ... 24
DFX Guidelines

1 SCOPE
This document provides guidelines for establishing a best practice methodology for use in developing a formal DFX (Design for Manufacturing, Fabrication, Assembly, Testability, Cost, Reliability, Environment, Reuse) process for layout of printed board assemblies that utilize surface mount and through hole devices.

1.1 Purpose The document provides a DFX process framework to establish a discipline of design review necessary to perform a detailed analysis of manufacturability attributes commonly found in electronics hardware for fabrication and around which to model a printed board assembly.

1.2 Goals of This Document The goals of this document are to:
• Use a multi-discipline engineering assessment tactic on elements influencing DFX.
• Allow the user to establish standardized DFX checklist(s) for major design elements such as bare printed board fabrication, printed board assembly manufacturing, electrical testability, and elements influencing product reliability, reuse, and impact on environment.

1.3 Limitations of This Document Electronics hardware defined under this DFX review process is limited to features of influence on DFX for bare printed board and printed board assembly.

2 APPLICABLE DOCUMENTS

2.1 IPC1
J-STD-001 Requirements for Soldered Electrical and Electronic Assemblies
IPC-T-50 Terms and Definitions for Interconnecting and Packaging Electronic Circuits
IPC-CH-65 Guidelines for Cleaning of Printed Boards and Assemblies
IPC-D-279 Design Guidelines for Reliable Surface Mount Technology Printed Board Assemblies
IPC-D-325 Documentation Requirements for Printed Boards, Assemblies and Support Drawings
IPC-A-610 Acceptability of Electronic Assemblies
IPC-SM-785 Guidelines for Accelerated Reliability Test of Surface Mount Solder Attachments
IPC-CC-830 Qualification and Performance of Electrical Insulating Compound for Printed Wiring Assemblies
IPC-2221 Generic Standard on Printed Board Design
IPC-2222 Sectional Design Standard for Rigid Organic Printed Boards
IPC-2223 Sectional Design Standard for Flexible Printed Boards
IPC-2224 Sectional Standard for Design of PWBs for PC Cards
IPC-2225 Sectional Design Standard for Organic Multichip Modules (MCM-L) and MCM-L Assemblies
IPC-2226 Sectional Design Standard for High Density Interconnect (HDI) Printed Boards
IPC-2581 Generic Requirements for Printed Board Assembly Products Manufacturing Description Data and Transfer Methodology
IPC-2615 Printed Board Dimensions and Tolerances
IPC-4761 Design Guide for Protection of Printed Board Via Structures

1. www.ipc.org