Generic Standard on Printed Board Design

Developed by the IPC-2221 Task Group (D-31b) of the Rigid Printed Board Committee (D-30) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 SCOPE ... 1
 1.1 Purpose ... 1
 1.2 Documentation Hierarchy 1
 1.3 Presentation ... 1
 1.3.1 Dimensional Units 1
 1.4 Interpretation .. 1
 1.5 Definition of Terms .. 2
 1.5.1 Microvia .. 2
 1.6 Classification of Products 2
 1.6.1 Printed Board Type 2
 1.6.2 Performance Classification 2
 1.6.3 Producibility Level 2
 1.7 Revision Level Changes 3

2 APPLICABLE DOCUMENTS 3
 2.1 IPC ... 3
 2.2 Joint Industry Standards 4
 2.3 Society of Automotive Engineers 5
 2.4 American Society for Testing and Materials 5
 2.5 Underwriters Labs 5
 2.6 IEEE .. 5
 2.7 ANSI .. 5
 2.8 ANSI/ESD .. 5
 2.9 PCMCIA ... 5

3 GENERAL REQUIREMENTS 6
 3.1 Information Hierarchy 8
 3.1.1 Order of Precedence 8
 3.1.2 End-Product Performance Requirements 8
 3.2 Design Considerations 8
 3.3 Schematic/Logic Diagram 9
 3.4 Density Evaluation 9
 3.5 Parts List ... 10
 3.6 Test Requirement Considerations 10
 3.6.1 Electrical .. 10
 3.6.2 Printed Board Assembly Testability 12
 3.6.3 Boundary Scan Testing 13
 3.6.4 Functional Test Concern for Printed Board Assemblies 14
 3.6.5 In-Circuit Test Concerns for Printed Board Assemblies 15
 3.6.6 Mechanical ... 17
 3.7 Layout Evaluation 17
 3.7.1 Printed Board Layout Design 17
 3.7.2 Feasibility Density Evaluation 18

4 MATERIALS ... 21
 4.1 Material Selection 21
 4.1.1 Material Selection for Structural Strength 21
 4.1.2 Material Selection for Electrical Properties ... 21
 4.1.3 Material Selection for Environmental Properties 21
 4.2 Dielectric Base Materials (Including Prepregs and Adhesives) 21
 4.2.1 Preimpregnated Bonding Layer (Prepreg) 22
 4.2.2 Adhesives ... 22
 4.2.3 Adhesive Films or Sheets 24
 4.2.4 Electrically Conductive Adhesives 24
 4.2.5 Thermally Conductive/Electrically Insulating Adhesives 24
 4.3 Laminate Materials 25
 4.3.1 High Tg Laminates 25
 4.3.2 Color Pigmentation 25
 4.3.3 Dielectric Thickness/Spacing 25
 4.3.4 Thermally Conductive Laminates 25
 4.3.5 Minimum Base Material Thickness for PC Card Form Factors 26
 4.4 Conductive Materials 26
 4.4.1 Electroless Copper Plating 29
 4.4.2 Semiconductive Coatings 29
 4.4.3 Electrolytic Copper Plating 29
 4.4.4 Gold Plating 29
 4.4.5 Immersion Silver 31
 4.4.6 Immersion Tin 31
 4.4.7 Organic Solderability Preservative (OSP) 32
 4.4.8 Nickel Plating 32
 4.4.9 Tin/Lead Plating 33
 4.4.10 Solder Coating 33
 4.4.11 Other Metallic Coatings for Edge Printed Board Contacts 34
 4.4.12 Metallic Foil/Film 34
 4.5 Electronic Component Materials 36
 4.5.1 Embedded (Buried) Resistors 36
 4.5.2 Embedded (Buried) Capacitors 36
 4.5.3 Embedded (Buried Inductors) 36
 4.6 Organic Protective Coatings 36
 4.6.1 Solder Mask Coatings 36
 4.6.2 Conformal Coatings 37
 4.6.3 Tarnish Protective Coatings 38
 4.7 Marking and Legends 38

November 2012
IPC-2221B
5 MECHANICAL/PHYSICAL PROPERTIES

5.1 Fabrication Considerations .. 39
5.1.1 Bare Printed Board Fabrication 39
5.2 Product/Printed Board Configuration 39
5.2.1 Printed Board Type ... 40
5.2.2 Printed Board Size .. 40
5.2.3 Printed Board Geometries (Size and Shape) 42
5.2.4 Bow and Twist .. 42
5.2.5 Structural Strength .. 42
5.2.6 Composite (Constraining-Core) Printed Boards 42
5.2.7 Vibration Design ... 43
5.3 Assembly Requirements ... 44
5.3.1 Mechanical Hardware Attachment 44
5.3.2 Part Support .. 44
5.3.3 Assembly and Test ... 45
5.3.4 Tooling Rails for PC Card Form Factor Printed Boards 45
5.4 Dimensioning Systems ... 45
5.4.1 Dimensions and Tolerances 45
5.4.2 Component and Feature Location 46
5.4.3 Datum Features ... 46
5.5 Printed Board Thickness Tolerance 49
5.6 Panelization ... 49
5.7 Palletization .. 49

6 ELECTRICAL PROPERTIES

6.1 Electrical Considerations ... 53
6.1.1 Electrical Performance .. 53
6.1.2 Power Distribution Considerations 53
6.1.3 Circuit Type Considerations 53
6.2 Conductive Material Requirements 56
6.3 Electrical Clearance ... 56
6.3.1 B1-Internal Conductors 57
6.3.2 B2-External Conductors, Uncoated, Sea Level to 3050 m [10,007 feet] 57
6.3.3 B3-External Conductors, Uncoated, Over 3050 m [10,007 feet] 57
6.3.4 B4-External Conductors, with Permanent Polymer Coating (Any Elevation) 58
6.3.5 A5-External Conductors, with Conformal Coating over Assembly (Any Elevation) 58
6.3.6 A6-External Component Lead/Termination, Uncoated, Sea Level to 3050 m [10,007 feet] 58
6.3.7 A7-External Component Lead/Termination, with Conformal Coating (Any Elevation) 58
6.4 Impedance Controls .. 58
6.4.1 Microstrip ... 59
6.4.2 Embedded Microstrip .. 60
6.4.3 Stripline Properties .. 61
6.4.4 Asymmetric Stripline Properties 61
6.4.5 Capacitance Considerations 62
6.4.6 Inductance Considerations 63

7 THERMAL MANAGEMENT

7.1 Cooling Mechanisms .. 65
7.1.1 Conduction .. 65
7.1.2 Radiation .. 65
7.1.3 Convection .. 66
7.1.4 Altitude Effects ... 66
7.2 Heat Dissipation Considerations 66
7.2.1 Printed Board Housing 66
7.2.2 Individual Component Heat Dissipation 67
7.2.3 Thermal Management Considerations for Printed Board Heatsinks 67
7.2.4 Assembly of Heatsinks to Printed Boards 68
7.2.5 Special Design Considerations for SMT Printed Board Heatsinks 69
7.3 Heat Transfer Techniques .. 70
7.3.1 Coefficient of Thermal Expansion (CTE) Characteristics 70
7.3.2 Thermal Transfer ... 70
7.3.3 Thermal Matching .. 70
7.4 Thermal Design Reliability 70

8 COMPONENT AND ASSEMBLY ISSUES

8.1 General Placement Requirements 72
8.1.1 Automatic Assembly ... 73
8.1.2 Component Placement ... 73
8.1.3 Orientation .. 74
8.1.4 Accessibility .. 75
8.1.5 Design Envelope .. 75
8.1.6 Component Body Centering 75
8.1.7 Flush Mounting Over Conductive Areas 75
8.1.8 Clearances .. 76
8.1.9 Physical Support ... 76
8.1.10 Heat Dissipation .. 78
8.1.11 Stress Relief .. 78
8.1.12 Heat Dissipation .. 78
8.1.13 General Attachment Requirements 79
8.1.14 Through-Hole .. 79
8.1.15 Surface Mounting .. 80
8.1.16 Mixed Assemblies .. 80
8.1.17 Soldering Considerations 80
8.1.18 Connectors and Interconnects 81
12.4.8 Peel Strength and Plating Adhesion Coupons .. 116
12.4.9 Controlled Impedance Coupons ... 116
12.4.10 Optional Legacy Registration Coupons .. 116
12.4.11 Legacy N Coupon (Peel Strength, Surface Mount Bond Strength - Optional for SMT) .. 116
12.4.12 Coupon X (Bending Flexibility and Endurance, Flexible Printed Board) 116
12.4.13 Process Control Test Coupon ... 116

APPENDIX A ... 117
APPENDIX B ... 142
APPENDIX C ... 162

Figures

Figure 1-1 Microvia Definition ... 2
Figure 3-1 Package Size and I/O Count ... 9
Figure 3-2 Test Land Free Area for Parts and Other Intrusions 16
Figure 3-3 Test Land Free Area for Tall Parts .. 16
Figure 3-4 Probing Test Lands ... 16
Figure 3-5 Example of Usable Area Calculation, mm [in] (Usable area determination includes clearance allowance for edge printed board connector area, printed board guides, and printed board extractor.) ... 18
Figure 3-6 Printed Board Density Evaluation ... 20
Figure 4-1 HASL Surface Topology Comparison 34
Figure 5-1 Example of Printed Board Size Standardization, mm [in] 41
Figure 5-2 Typical Asymmetrical Constraining-Core Configuration 43
Figure 5-3A Multilayer Metal Core Printed Board with Two Symmetrical Copper-Invar-Copper Constraining Cores (when the Copper-Invar-Copper planes are connected to the plated-through hole, use thermal relief per Figure 9-4) ... 43
Figure 5-3B Symmetrical Constraining Core Printed Board with a Copper-Invar-Copper Center Core .. 43
Figure 5-4 Advantages of Positional Tolerance Over Bilateral Tolerance, mm [in] 46
Figure 5-5 Datum Reference Frame ... 47
Figure 5-6 Example of Location of a Pattern of PTHs, mm [in] 48
Figure 5-7 Example of a Pattern of Tooling/Mounting Holes, mm [in] 48
Figure 5-8 Example of Location of a Conductor Pattern Using Fiducials, mm [in] 49
Figure 5-9 Example of Printed Board Profile Location and Tolerance, mm [in] 50
Figure 5-10 Example of a Printed Board Drawing Utilizing Geometric Dimensioning and Tolerancing, mm [in] ... 50
Figure 5-11 Fiducial Clearance Requirements .. 51
Figure 5-12 Printed Board Panelization/Palletization, mm .. 51
Figure 5-13 Example of Connector Key Slot Location and Tolerance, mm [in] 52
Figure 6-1 Voltage/Ground Distribution Concepts 54
Figure 6-2 Single Reference Edge Routing .. 55
Figure 6-3 Circuit Distribution ... 55
Figure 6-4 Transmission Line Printed Board Construction 59
Figure 6-5 Capacitance vs. Conductor Width and Dielectric Thickness for Microstrip Lines, mm [in] ... 63
Figure 6-6 Capacitance vs. Conductor Width and Spacing for Striplines, mm [in] 64
Figure 6-7 Single Conductor Crossover ... 64
Figure 7-1 Component Clearance Requirements for Automatic Component Insertion .. 68
Figure 7-2 Relative Coefficient of Thermal Expansion (CTE) Comparison 71
Figure 8-1 Component Orientation for Boundaries and/or Wave Solder Applications ... 75
Figure 8-2 Component Body Centering ... 75
Figure 8-3 Axial-Leaded Component Mounted Over Conductors 76
Figure 8-4 Uncoated Board Clearance .. 76
Figure 8-5 Clamp-Mounted Axial-Leaded Component 76
Figure 8-6 Adhesive-Bonded Axial-Leaded Component 76
Figure 8-7 Example of Filleting Compared to Bonding 77
Figure 8-8 Mounting with Feet or Standoffs ... 77
Figure 8-9 Heat Dissipation Examples ... 78
Figure 8-10 Lead Bends ... 79
Figure 8-11 Typical Lead Configurations ... 79
Figure 8-12 Typical Keying Arrangement .. 82
Figure 8-13 Printed Board Edge Tolerancing ... 82
Figure 8-14 Lead-In Chamfer Configuration .. 83
Figure 8-15 Two-Part Connector ... 83
Figure 8-16 Edge-Board Adapter Connector .. 83
Figure 8-17 Round or Flattened (Coined) Lead Joint Description 85
Figure 8-18 Standoff Terminal Mounting, mm [in] 85
Figure 8-19 Dual Hole Configuration for Interfacial and Interlayer Terminal M mountings ... 86
Figure 8-20 Partially Clinched Through-Hole Leads 88
Figure 8-21 Dual In-Line Package (DIP) Lead Bends 88
Figure 8-22 Solder in the Lead Bend Radius .. 88
Figure 8-23 Two-Lead Radial-Leaded Components 89
Figure 8-24 Radial Two-Lead Component Mounting, mm [in] 89
Figure 8-25 Meniscus Clearance, mm [in] .. 89
Figure 8-26 “TO” Can Radial-Leaded Component, mm [in] 89
Figure B.12-1 Test Coupon X, mm [in] 161
Figure B.12-2 Bending Test .. 161

Tables

Table 3-1 PCB Design/Performance Tradeoff Checklist .. 6
Table 3-2 Component Grid Areas .. 19
Table 4-1 Typical Properties of Common Dielectric Materials 23
Table 4-2 Final Finish and Coating Requirements ... 26
Table 4-3 Surface and Hole Copper Plating Minimum Requirements for Buried Vias >2 Layers, Through-Holes, and Blind Vias 27
Table 4-4 Surface and Hole Copper Plating Minimum Requirements for Microvias (Blind and Buried) .. 27
Table 4-5 Surface and Hole Copper Plating Minimum Requirements for Buried Via Cores (2 Layers) .. 27
Table 4-6 Surface Finishes .. 28
Table 4-7 Gold Plating Uses .. 29
Table 4-8 ENIG Surface Finish Advantages and Disadvantages 30
Table 4-9 ENIG/EG Surface Finish Advantages and Limitations 30
Table 4-10 ENEPIG Surface Finish Advantages and Disadvantages 31
Table 4-11 Immersion Silver Surface Finish Advantages and Disadvantages 31
Table 4-12 Immersion Tin Surface Finish Advantages and Disadvantages 31
Table 4-13 OSP Surface Finish Advantages and Limitations 32
Table 4-14 Copper Foil/Film Requirements .. 33
Table 4-15 Metal Core Substrates .. 35
Table 4-16 Typical Minimum Solder Mask Clearances and Dams 36
Table 4-17 Conformal Coating Types and Thickness Range .. 37
Table 4-18 Conformal Coating Functionality .. 38
Table 5-1 Fabrication Assumptions and Considerations ... 40
Table 5-2 PC Card Form Factor Substrate Dimensions .. 40
Table 5-3 Typical Assembly Equipment Limits ... 45
Table 6-1 Electrical Conductor Spacing .. 57
Table 6-2 Typical Relative Bulk Dielectric Constant of Printed Board Material ... 60
Table 6-3 Example Plane Sequences for a Six Layer Printed Board 62
Table 7-1 Effects of Material Type on Construction .. 65
Table 7-2 Emissivity Ratings for Certain Materials .. 66
Table 7-3 Printed Board Heatsink Assembly Preferences .. 69
Table 7-4 Comparative Reliability Matrix Component Lead/Termination Attachment 70
Table 9-1 Minimum Standard Fabrication Allowance for Interconnection Lands 96
Table 9-2 Annular Rings (Minimum) .. 97
Table 9-3 Minimum Drilled Hole Size for Buried Vias .. 99
Table 9-4 Minimum Drilled Hole Size for Blind Vias .. 99
Table 9-5 Minimum Hole Location Tolerance, dtp .. 101
Table 9-6 Through-Hole Diameters Minimum and Maximum and Aspect Ratio, mm [in] 102
Table 10-1 Internal Layer Foil Thickness After Processing .. 103
Table 10-2 External Conductor Thickness After Plating ... 103
Table 12-1 Appendix A Coupon Requirements .. 111
Table 12-2 Appendix B (Legacy) Coupon Requirements .. 111
Table A.1-1 IPC Coupons .. 117
Table A.2-1 AB/R Coupon Parameters, mm [in] .. 118
Table A.3-1 A/R Coupon Parameters, mm [in] .. 121
Table A.4-1 B/R Coupon Parameters, mm [in] .. 124
Table A.5-1 E Coupon Parameters, mm [in] .. 126
Table A.6-1 S Coupon Parameters, mm [in] .. 128
Table A.7-1 W Coupon Parameters, mm [in] .. 130
Table A.8-1 D Coupon Parameters, mm [in] .. 132
Table A.9-1 G Coupon Parameters, mm [in] .. 134
Table A.10-1 H Coupon Parameters, mm [in] .. 137
Table A.11-1 P Coupon Parameters, mm [in] .. 139
Table A.12-1 Z Coupon Parameters, mm [in] .. 140
Table B.1-1 IPC-2221 Legacy Coupons .. 142
1 SCOPE
This standard establishes the generic requirements for the design of organic printed boards and other forms of component mounting or interconnecting structures, including PC card form factors. The organic materials may be homogeneous, reinforced, or used in combination with inorganic materials; the interconnections may be single, double, or multilayered.

1.1 Purpose The requirements contained herein are intended to establish design principles and recommendations that shall be used in conjunction with the detailed requirements of a specific interconnecting structure sectional standard (see 1.2) to produce detailed designs intended to mount and connect components. This standard is not intended for use as a performance specification for finished printed boards nor as an acceptance document for electronic assemblies.

1.2 Documentation Hierarchy This standard identifies generic physical design principles, and is supplemented by various sectional standards that provide sharper focus on specific aspects of printed board technology. These include:

- IPC-2222 Rigid organic printed board design
- IPC-2223 Flexible printed board design
- IPC-2225 Organic, MCM-L, printed board design
- IPC-2226 High Density Interconnect (HDI) printed board design

The documents are a part of the Family of Design Documents which is identified as IPC-2220. The number IPC-2220 is for ordering purposes only and includes this standard and the four listed above.

Note: IPC-2224, a sectional design standard for PC card form factors, was cancelled by the IPC. Relevant PC form factor design information has been transferred to this revision of IPC-2221 and to IPC-2222.

1.3 Presentation All dimensions and tolerances in this standard are expressed in hard SI (metric) units and parenthetical soft imperial (inch) units. Users of this standard are expected to use metric dimensions. All dimensions greater than or equal to 0.1 mm [0.0039 in] will be expressed in millimeters and inches. All dimensions less than 0.1 mm [0.0039 in] will be expressed in micrometers and microinches.

1.3.1 Dimensional Units The following is taken from National Institute of Standards and Technology - Metric Information and Conversions: “Beginning January 1, 2010, the European Union Council Directive 80/181/EEC (Metric Directive) allowed the use of only metric units, and prohibited the use of any other measurements for most products sold in the European Union (EU). The Metric Directive made the sole use of metric units obligatory in all aspects of life in the European Union, extending to areas such as product literature and advertising.”

Most component datasheets are provided in metric units. Many printed board designers spend a lot of time converting between imperial (inch) and SI (metric). Round-off errors, when converting units, can result in inaccuracies that result in marginal or failed designs. However, the printed board fabrication vendors often default to imperial units. Electronic Computer Aided Design (ECAD) tools accommodate both metric and imperial library components being placed on the same printed board because dimensional precision is large enough to describe most standard components accurately.

Problems arise when importing information from third party software or trying to mix units during printed board layout. For example, if a portion of the printed board design is an imported Drawing Exchange Format (.DXF) file with metric units that needs to interface with a digital portion done in imperial units, a problem can occur where the data from the two grids are mixed. Unlike importing from libraries, a conversion to printed board units is not always done when importing DXF.

While a user can convert printed board units from metric to imperial in modern day tools without problems, this should not be done too often during the design phase as repeated conversions can introduce unexpected errors. A single set of units should be used in the layout of the printed board. If imported data is in metric units, the layout portion of the process should use metric units. Once the layout is complete and verified, the designer can convert the printed board to imperial units for documentation, if necessary.

1.4 Interpretation “Shall,” the imperative form of the verb, is used throughout this standard whenever a requirement is intended to express a provision that is mandatory. Deviation from a “shall” requirement may be considered if sufficient data is supplied to justify the exception.