Optoelectronic Assembly and Packaging Technology

Developed by the Optoelectronics Assembly Subcommittee (5-25) of the Assembly & Joining Processes Committee (5-20) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
Table of Contents

1 SCOPE ... 1
 1.1 Purpose ... 1
 1.2 Categorization .. 2
 1.2.1 Complexity or Producibility Level 2
 1.3 Classification of Products 3
 1.3.1 Performance Classes 3
 1.4 Applicable Documents .. 3
 1.4.1 Reference Documents 3

2 TECHNOLOGY OVERVIEW .. 4
 2.1 Optoelectronics in Optical Communication Systems 5
 2.2 History of Optoelectronic Packaging 5
 2.3 Optoelectronic Modules 6
 2.4 Packaging and Hermeticity 7
 2.4.1 Hermetic Packaging 7
 2.4.2 Nonhermetic Packaging 8
 2.5 Theory of Optical Fiber 8
 2.5.1 Multimode Fiber ... 9
 2.5.2 Single-Mode Fiber .. 10
 2.6 Automation Requirements 11
 2.6.1 Fiber Manufacturing 12
 2.6.2 Component Manufacturing 12
 2.6.3 Connectorization ... 14
 2.6.4 Optical Testing .. 14
 2.6.5 Fusion Splicing, Other Optical Coupling Techniques 15
 2.6.6 Fiber Handling ... 16
 2.6.7 Buffer Jacket Damage 16
 2.6.8 Bend Radius .. 16
 2.6.9 Fiber Ends .. 16
 2.6.10 Summary ... 16

3 APPLICATIONS OF OPTOELECTRONIC PRODUCTS 17
 3.1 Consumer Products (Previously Low Cost) 17
 3.1.1 Component Characteristics 18
 3.1.2 Board Assembly Issues 18
 3.2 High Performance (Office and Large Business Systems) 19
 3.2.1 Component Characteristics 20
 3.2.2 Board Assembly Issues 20
 3.3 Portable Products ... 20
 3.4 Harsh Environments ... 20

4 DESIGN CONSIDERATIONS ... 21
 4.1 Level 1 Design Consideration 21
 4.1.1 Optical Design .. 21
 4.1.2 Coupling Between Lensed Fiber and Laser Waveguide ... 22
 4.1.3 Passive Alignment ... 24
 4.1.4 Active Alignment ... 24
 4.1.5 Optical Microsubmounts 24
 4.1.6 Alignment Technology 25
 4.1.7 Design/Process for Rework 28
 4.1.8 Single Fiber ... 30
 4.1.9 Fiber Ribbon Cable .. 30
 4.1.10 Axis Change Coupling of Multifiber 31
 4.1.11 Multifiber Termination Using Cost-Efficient Plastic Parts, Suitable for MT-Connector 31
 4.1.12 Package Interconnection 31
 4.1.13 Package Interconnect 32
 4.2 Level 1 Components ... 34
 4.2.1 Component Housings 35
 4.2.2 Mechanical and Environmental Protection 36
 4.2.3 Heat Transfer from the Component to the Outside of Component Housing 36
 4.2.4 Optical Train Stability 36
 4.2.5 Electrical Feedthrough Component Housing 36
 4.3 Level 1C Design Consideration 41
 4.3.1 Multichip Module ... 41
 4.4 Packaging Level 2 .. 42
 4.4.1 Optical Signal Management 42
 4.4.2 Electrical Interconnect Consideration Management 44
 4.4.3 Thermal Concepts and Implementation 45
 4.4.4 Assembly Methodology Considerations 47
 4.5 Packaging Level 3 .. 47
 4.5.1 System Integration .. 47

5 COMPONENTS (ELEMENTS AND MATERIALS) 48
 5.1 Level 1 Components ... 48
 5.1.1 Active Optical Components 48
 5.1.2 Passive Optical Components 52
 5.1.3 Electrical Components 56
 5.1.4 Mechanical Components 59
 5.1.5 Thermal Components 60
 5.2 Level 2 Type Components 66
 5.2.1 Active Optical Component Packages 66
 5.2.2 Passive Optical Components 67
5.2.3 Waveguide ... 68
5.2.4 Electrical Components 72
5.3 Level 3 System Integration Components 78
5.3.1 Patch Cords .. 78

6 MATERIAL PROPERTIES 78
6.1 Optical Materials 78
6.1.1 Glass ... 78
6.1.2 Polymer ... 79
6.1.3 Optical Jelly/Index Matching Fluids 79
6.1.4 Reflective Materials 79
6.2 Attachment Material 79
6.2.1 Electrically Conductive Adhesives 81
6.2.2 Solder ... 81
6.2.3 Low Temp Melting Glass 82
6.2.4 Brazing Material 83
6.2.5 Wire Bonding Material 83
6.3 Substrate Material 83
6.3.1 Substrates for Optical Systems 83
6.3.2 Copper Clad Laminate (Rigid) 84
6.3.3 Flexible Material (Clad and Unclad) 85
6.4 Heat Transfer Materials 87
6.4.1 Filled Polymers 87
6.4.2 Composites ... 87
6.4.3 Thermally Conductive Grease 87
6.4.4 Diamond Thin Film 87
6.5 Housing Materials 87
6.5.1 Iron/Cobalt/Nickel Alloys (Kovar) 87
6.5.2 Iron/Nickel (Alloy 42) Laminated Multilayer Ceramic 87

7 ASSEMBLY PROCESSES 88
7.1 Assembly Process Overview 88
7.1.1 Land Finishes - Lid Sealing 88
7.2 Die and Component Bonding 88
7.2.1 Metallurgical Die Attach and Bonding 89
7.2.2 Polymer Adhesive Die Attach and Bonding 90
7.2.3 Inorganic Glass-Based Die Attach and Bonding 91
7.3 Electrical Connection to Components 91
7.3.1 Wire Bonding for Electronic Interconnect 92
7.3.2 Flip Chip Attach Process of Active and Passive Devices 94
7.3.3 Flip Chip for Optoelectronic Assembly 94
7.3.4 Forms of Flip Chip Contacts 96
7.4 Encapsulation ... 96
7.4.1 Wire Bonded Devices 96
7.5 Fiber Sealing in a Hermetic Assembly 97

7.6 Substrate Preparation for Level 1 and Level 2 .. 98
7.7 Optical Fiber Splicing (Mechanical/Fusion) 99
7.7.1 General Optical Fiber Splicing Process Flow .. 99
7.7.2 Stripping ... 99
7.7.3 Fiber Cleaning 101
7.7.4 Fiber Cleaving 101
7.7.5 Mechanical Splicing 101
7.7.6 Fusion Splicing 103
7.7.7 Loss Estimation/Measurement 105
7.7.8 Splice Protection 106
7.7.9 Automation ... 108
7.8 Electrical Attachment 108
7.9 Fiber Termination 109
7.9.1 Fiber Cutting 109
7.9.2 Fiber Ferrule Attach 109
7.9.3 Fiber Connectorization 109
7.9.4 Fiber End Shaping 109
7.10 Fiber Management 109
7.11 Mechanical Assembly 110
7.12 In-Circuit and Functional Test 110
7.13 HAST Test .. 110
7.14 Modification and Rework 111
7.14.1 Level 1 Repairs 111
7.14.2 Tape Automation Bond Repairs 111
7.14.3 Adhesive Conditioning 112

8 TESTING TECHNIQUES 112
8.1 Insertion Loss Measurement 113
8.2 Splice Loss Measurement Via OTDR 113
8.2.1 Operating Principles of OTDR 113
8.2.2 Negative Losses 115
8.2.3 Directional Dependence of OTDR Measurement .. 115
8.2.4 Calculation of True Splice Loss 115
8.3 Splice Loss Measurement Via Power Source and Meter 115
8.3.1 Method 1 .. 117
8.3.2 Method 2 .. 117

9 RELIABILITY REQUIREMENTS 117
9.1 Optical Safety Precautions 117
9.2 General Requirements 118
9.3 Cleanliness .. 118
9.3.1 Fiber Cleanliness 118
9.3.2 Connector Cleanliness 118
9.3.3 Dust Cap Contamination 119
Figure 4-29 Glass Seal Pins ... 39
Figure 4-30 Single Layer Ceramic Feedthrough 40
Figure 4-31 Wire Bondable Pads 40
Figure 4-32 Differential Signal Configuration 40
Figure 4-33 Coax Connector .. 40
Figure 4-34 Incorporated Lens 41
Figure 4-35 Incorporated Lens 41
Figure 4-36 Split Housing .. 41
Figure 4-37 Cover on Split Housing 41
Figure 4-38 Example of Waveguide Added to Printed Board ... 44
Figure 4-39 Flexible Material Used for Routing 44
Figure 4-40 Two-Piece Connector Example 46
Figure 4-41 Eight-Layer MCM-L 46
Figure 4-42 Methods of 3D Die Integration 47
Figure 5-1 Spontaneous vs. Stimulated Emission 49
Figure 5-2 Light Reflecting in a Lasing Cavity 49
Figure 5-3 Photodiode Principles 50
Figure 5-4 Schematic of Detector 50
Figure 5-5 APD Internal Gain .. 51
Figure 5-6 Employing Waveguides on Lithium Niobate to Form a Modulator 51
Figure 5-7 2x2 Electrostatic Mems Optical Switch 53
Figure 5-8 1x8 Optical Mems Switch 53
Figure 5-9 Optical Cross Connect and Mirror 54
Figure 5-10 Polymer Optical Fiber for 1 Gbs 55
Figure 5-11 Functional Representation of Isolator 56
Figure 5-12 Shows Flow of Energy in a Circulator 56
Figure 5-13 Example of Wavelength Coupling 57
Figure 5-14 Prototype Amplifier - Brackets and Housing 60
Figure 5-15 Submount - Optical Bench & Platform 61
Figure 5-16 Silicon V-Groove Alignment Block 61
Figure 5-17 Ferrule Options .. 62
Figure 5-18 Mechanical Ferrule Assembly 62
Figure 5-19 Forced Convection and Natural Convection Cooling Using Die Cast Designs 63
Figure 5-20 Aluminum Nitride (170 W/mK) Submounts 64
Figure 5-21 Typical Thermo-Electric Module 64
Figure 5-22 Thermo Electric Coolers 65
Figure 5-23 Optoelectronic Applications of Thermo Electric Cooler 65
Figure 5-24a Heat Pipe Operation and Microelectronics 66
Figure 5-24b Variety - Heat Pipes for Many Applications ... 66
Figure 5-25 Example of a Transponder Design 67
Figure 5-26 Multiport Fiber Component 67
Figure 5-27 Conventional Biconic Taper - Star Combiner 68
Figure 5-28 Fiber Interconnection Methods 68
Figure 5-29 Causes of Loss from Splicing 69
Figure 5-30 Left Memis Adjustable Optical Attenuator, Right Adjustable Optically Attenuated Receiver .. 69
Figure 5-31 Mismatch Between Different Components in a Lightwave Communication System 70
Figure 5-32 Laser-to-Fiber Coupling 71
Figure 5-33 4x4 SOA Switch .. 71
Figure 5-34 Out of Plane Coupling 71
Figure 5-35 Embossed Waveguide Structure 72
Figure 5-36 Multiplexing and Demultiplexing of Digital Signals .. 72
Figure 5-37 Wavelength Multiplexing and Demultiplexing 73
Figure 5-38 Semiconductor Device in Heat Removal Housing .. 78
Figure 5-39 Patch Cords with FC, LC and SC 78
Figure 6-1 Wavelength Characteristics 80
Figure 6-2 Micromirrors on Silicon 80
Figure 6-3 Example of Waveguides in PWB Technology 84
Figure 6-4 In Plane (X-Y) Coefficient of Expansion - ppm/°C .. 84
Figure 6-5 Frequency to Loss Tangent Comparisons 86
Figure 6-6 Heat Transfer Planes - Thermal Conductivity 87
Figure 7-1 Example of a Lifted Au Ball Bond Wire Showing Adhering Bond Pad and Bulk Silicon Material Adhering Due to Cratering of the Die During Bonding 92
Figure 7-2 Gold Wire Ball Bonds at 45 µm Bond Pad Pitch on Silicon IC .. 93
Figure 7-3 Stitch Bond at Gold Wire End Opposing the 45 µm Pitch Ball Bonds Exemplified in the Previous Figure .. 93
Figure 7-4 Typical Aluminum Wire Wedge Bond on an IC Bond Pad .. 93
Figure 7-5 Flip Chip Bump Metallurgy 94
Figure 7-6 Standard Flip Chip Array With Eutectic Sn/Pb Solder Bumps .. 95
Figure 7-7 Au and Sn Electroplated in Two Stages on InP Laser .. 95
Figure 7-8 Au and Sn Reflowed on InP Laser Forming AuSn20 Solder .. 95
Figure 7-9 InP Laser Diode Flip Chip Soldered with AuSn Bumps Using Self-Alignment 96
Figure 7-10 Schematic of Metallized Fiber End 97
Figure 7-11 Example of a Complex Optical Cable With Multiple Fibers .. 97
Figure 7-12 General Optical Fiber/Cable Splicing Schematic .. 100
Figure 7-13 Schematic of Typical Buffer-Coated Optical Fiber .. 101
Figure 7-14 Fiber End Face Defects Caused by Poor Cleaving Practice .. 102
1 SCOPE
This document addresses the implementation of optical and optoelectronic packaging technologies.

The areas discussed include: technology choices, design considerations, material properties, component mounting and interconnecting structures, assembly processes, testing, application, rework, and reliability of completed optoelectronic products. Optoelectronic packaging technologies include active and passive components and discrete fiber cable, their characteristics, and the manner that these parts will become an integral part of the functioning module, board or subassembly.

1.1 Purpose This document is intended to provide general information on implementing optical and optoelectronic packaging technologies, for creating component mounting structures and assemblies that may be exclusively optically oriented or that are to perform a combination of optical and electronic functions.

1.2 Categorization Optoelectronic components are categorized by function (i.e., modulators, lasers, switches, detectors); optoelectronic assemblies are categorized by higher level functions (i.e., transmitters, receivers, amplifiers, transponders). See Figures 1-1 through 1-3.

There are four levels of optoelectronic packaging. These levels have been established to mirror previous packaging levels assigned to electronic equipment. They are intended to make a clear demarcation between manufacturing products intended for the optoelectronic market. The four levels are:

- **OPTO Level 0**: Uncased device (e.g., lenses, Isolator, laser diode, waveguide beam splitters, etc.)
- **OPTO Level 1**: Single device or multiple devices in a package (Multi-Device Subassembly (MDS) - a package integrating optical, optoelectronic components and IC components)
- **OPTO Level 2**: Modules and product boards (Transponder on a daughter card)
- **OPTO Level 3**: Mother board with product boards or cabling (Transponder mounted on a mother board)

It should be recognized that there are also levels of complexity included in each of the levels of optoelectronic packages. Level 0 complexity deals with unpackaged devices complexity primarily relating to the complexity or difficulty in the manufacturing process.

Levels 1 through 3 complexities relate to the assembly process(s) necessary to produce a quality optoelectronic

Figure 1-1 Optoelectronic Communication System Structure