Acceptability of Electronic Assemblies

Developed by the IPC-A-610 development team including Task Group (7-31B), Task Group Asia (7-31BCN), Task Group Nordic (7-31BND), Task Group German Language (7-31BDE) and Task Group India (7-31BIN) of the Product Assurance Committees (7-30 and 7-30CN) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
1 Foreword ............................................................... 1-1
1.1 Scope ............................................................... 1-2
1.2 Purpose ............................................................. 1-3
1.3 Personnel Proficiency ........................................... 1-3
1.4 Classification ..................................................... 1-3
1.5 Definition of Requirements ..................................... 1-3
  1.5.1 Acceptance Criteria ........................................ 1-4
  1.5.1.1 Target Condition .......................................... 1-4
  1.5.1.2 Acceptable Condition .................................... 1-4
  1.5.1.3 Defect Condition ......................................... 1-4
  1.5.1.3.1 Disposition ............................................. 1-4
  1.5.1.4 Process Indicator Condition ............................ 1-4
  1.5.1.4.1 Process Indicator Methodologies .................... 1-4
  1.5.1.5 Combined Conditions .................................... 1-4
  1.5.1.5.1 Process Indicator Methodologies .................... 1-4
  1.5.1.6 Conditions Not Specified .............................. 1-5
  1.5.1.7 Specialized Designs ...................................... 1-5
1.6 Terms and Definitions .......................................... 1-5
  1.6.1 Board Orientation ........................................... 1-5
  1.6.1.1 Primary Side ............................................. 1-5
  1.6.1.2 Secondary Side .......................................... 1-5
  1.6.1.3 Solder Source Side ....................................... 1-5
  1.6.1.4 Solder Destination Side ................................ 1-5
  1.6.2 Cold Solder Connection .................................... 1-5
  1.6.3 Electrical Clearance ....................................... 1-5
  1.6.4 FOD (Foreign Object Debris) ............................ 1-5
  1.6.5 High Voltage .............................................. 1-5
  1.6.6 Intrusive Solder ............................................ 1-6
  1.6.7 Meniscus (Component) .................................. 1-6
  1.6.8 Nonfunctional Land ........................................ 1-6
  1.6.9 Pin-in-Paste ................................................ 1-6
  1.6.10 Solder Balls ............................................... 1-6
  1.6.11 Wire Diameter ............................................. 1-6
  1.6.12 Wire Overlap .............................................. 1-6
  1.6.13 Wire Overwrap ............................................ 1-6
1.7 Examples and Illustrations ................................... 1-6
1.8 Inspection Methodology ........................................ 1-6
1.9 Verification of Dimensions .................................. 1-6
1.10 Magnification Aids ............................................ 1-6
1.11 Lighting ........................................................ 1-7
1.12 Magnification Aids ............................................ 1-7
1.13 Lighting ........................................................ 1-7
2 Applicable Documents ............................................ 2-1
  2.1 IPC Documents ................................................ 2-1
  2.2 Joint Industry Documents .................................... 2-1
  2.3 EOS/ESD Association Documents ........................... 2-2
  2.4 Electronics Industries Alliance Documents ............. 2-2
  2.5 International Electrotechnical Commission Documents 2-2
  2.6 ASTM .......................................................... 2-2
  2.7 Technical Publications ....................................... 2-2
3 Handling Electronic Assemblies ................................. 3-1
  3.1 EOS/ESD Prevention .......................................... 3-2
    3.1.1 Electrical Overstress (EOS) ............................ 3-3
    3.1.2 Electrostatic Discharge (ESD) ......................... 3-4
    3.1.3 Warning Labels .......................................... 3-5
    3.1.4 Protective Materials .................................... 3-6
  3.2 EOS/ESD Safe Workstation/EPA ............................. 3-7
  3.3 Handling Considerations .................................... 3-9
    3.3.1 Guidelines ................................................ 3-9
    3.3.2 Physical Damage ......................................... 3-10
    3.3.3 Contamination ........................................... 3-10
    3.3.4 Electronic Assemblies .................................. 3-11
    3.3.5 After Soldering .......................................... 3-11
    3.3.6 Gloves and Finger Cots ................................ 3-12
4 Hardware .......................................................... 4-1
  4.1 Hardware Installation ........................................ 4-2
    4.1.1 Electrical Clearance ..................................... 4-2
    4.1.2 Interference ............................................... 4-3
    4.1.3 Component Mounting – High Power .................... 4-4
    4.1.4 Heatsinks ................................................ 4-6
    4.1.4.1 Insulators and Thermal Compounds ................. 4-6
    4.1.4.2 Contact ................................................ 4-8
    4.1.5 Threaded Fasteners and Other Hardware ............ 4-9
      4.1.5.1 Torque ................................................. 4-11
      4.1.5.2 Wires ................................................ 4-13
Table of Contents (cont.)

6.11 Pierced/Perforated ........................................ 6-44
  6.11.1 Lead/Wire Placement ................................ 6-44
  6.11.2 Solder .................................................. 6-46

6.12 Hook ................................................................ 6-47
  6.12.1 Lead/Wire Placement ................................ 6-47
  6.12.2 Solder .................................................. 6-49

6.13 Solder Cups .................................................... 6-50
  6.13.1 Lead/Wire Placement ................................ 6-50
  6.13.2 Solder .................................................. 6-52

6.14 AWG 30 and Smaller Diameter Wires – Lead/Wire Placement ........................................... 6-54

6.15 Series Connected ............................................ 6-55

6.16 Edge Clip – Position ........................................... 6-56

7 Through-Hole Technology ............................................. 7-1

7.1 Component Mounting ............................................. 7-2
  7.1.1 Orientation .................................................. 7-2
  7.1.1.1 Orientation – Horizontal ......................... 7-3
  7.1.1.2 Orientation – Vertical ......................... 7-5
  7.1.2 Lead Forming .................................................. 7-6
  7.1.2.1 Bend Radius .............................................. 7-6
  7.1.2.2 Space between Seal/Weld and Bend ......... 7-7
  7.1.2.3 Stress Relief ........................................... 7-8
  7.1.2.4 Damage ................................................... 7-10
  7.1.3 Leads Crossing Conductors ................................ 7-11
  7.1.4 Hole Obstruction .......................................... 7-12
  7.1.5 DIP/SIP Devices and Sockets ......................... 7-13
  7.1.6 Radial Leads – Vertical ................................ 7-15
  7.1.6.1 Spacers .................................................. 7-16
  7.1.7 Radial Leads – Horizontal ......................... 7-18
  7.1.8 Connectors .................................................. 7-19
  7.1.8.1 Right Angle ............................................. 7-21
  7.1.8.2 Vertical Shrouded Pin Headers and Vertical Receptacle Connectors ................................ 7-22
  7.1.9 Conductive Cases .......................................... 7-23

7.2 Component Securing ............................................. 7-23
  7.2.1 Mounting Clips ............................................. 7-23
  7.2.2 Adhesive Bonding ......................................... 7-25

7.2.2.1 Adhesive Bonding – Nonelevated Components .................................................. 7-26
  7.2.2.2 Adhesive Bonding – Elevated Components .................................................. 7-29
  7.2.3 Other Devices .................................................. 7-30

7.3 Supported Holes .................................................. 7-31
  7.3.1 Axial Leaded – Horizontal ......................... 7-31
  7.3.2 Axial Leaded – Vertical ......................... 7-33
  7.3.3 Wire/Lead Protrusion ................................ 7-35
  7.3.4 Wire/Lead Clinches ................................ 7-36
  7.3.5 Solder ................................................... 7-38
  7.3.5.1 Vertical Fill (A) ........................................ 7-41
  7.3.5.2 Solder Destination Side – Lead to Barrel (B) .................................................. 7-41
  7.3.5.3 Solder Destination Side – Land Area Coverage (C) ........................................ 7-45
  7.3.5.4 Solder Source Side – Lead to Barrel (D) .... 7-46
  7.3.5.5 Solder Source Side – Land Area Coverage (E) ........................................ 7-47
  7.3.5.6 Solder Conditions – Solder in Lead Bend .... 7-48
  7.3.5.7 Solder Conditions – Touching Through-Hole Component Body ...................................... 7-49
  7.3.5.8 Solder Conditions – Meniscus in Solder .... 7-50
  7.3.5.9 Lead Cutting after Soldering .................... 7-52
  7.3.5.10 Coated Wire Insulation in Solder .......... 7-53
  7.3.5.11 Interfacial Connection without Lead – Vias .... 7-54
  7.3.5.12 Board in Board ................................ ........ 7-55

7.4 Unsupported Holes .............................................. 7-58
  7.4.1 Axial Leads – Horizontal ......................... 7-58
  7.4.2 Axial Leads – Vertical ......................... 7-59
  7.4.3 Wire/Lead Protrusion ................................ 7-60
  7.4.4 Wire/Lead Clinches ................................ 7-61
  7.4.5 Solder ................................................... 7-63
  7.4.6 Lead Cutting after Soldering .................... 7-65

7.5 Jumper Wires ...................................................... 7-66
  7.5.1 Wire Selection ............................................. 7-66
  7.5.2 Wire Routing .............................................. 7-67
  7.5.3 Wire Staking .............................................. 7-69
  7.5.4 Supported Holes ........................................ 7-71
  7.5.4.1 Supported Holes – Lead in Hole ............ 7-71
  7.5.5 Wrapped Attachment ................................ 7-72
  7.5.6 Lap Soldered .................................................. 7-73
Table of Contents (cont.)

8 Surface Mount Assemblies ........................................ 8-1
  8.1 Staking Adhesive ................................................ 8-3
     8.1.1 Component Bonding ......................................... 8-3
     8.1.2 Mechanical Strength ........................................ 8-4
  8.2 SMT Leads ........................................................ 8-6
     8.2.1 Plastic Components .......................................... 8-6
     8.2.2 Damage ........................................................ 8-6
     8.2.3 Flattening ................................................... 8-7
  8.3 SMT Connections .................................................. 8-7
  8.3.1 Chip Components – Bottom Only
     Terminations ...................................................... 8-8
     8.3.1.1 Side Overhang (A) ....................................... 8-9
     8.3.1.2 End Overhang (B) ........................................ 8-10
     8.3.1.3 End Joint Width (C) ..................................... 8-11
     8.3.1.4 Side Joint Length (D) ................................... 8-12
     8.3.1.5 Maximum Fillet Height (E) ................................ 8-13
     8.3.1.6 Minimum Fillet Height (F) ............................... 8-13
     8.3.1.7 Solder Thickness (G) ................................... 8-14
     8.3.1.8 End Overlap (J) ........................................... 8-14
  8.3.2 Rectangular or Square End Chip
     Components – 1, 3 or 5 Side
     Terminations ....................................................... 8-15
     8.3.2.1 Side Overhang (A) ....................................... 8-16
     8.3.2.2 End Overhang (B) ........................................ 8-18
     8.3.2.3 End Joint Width (C) ..................................... 8-19
     8.3.2.4 Side Joint Length (D) ................................... 8-21
     8.3.2.5 Maximum Fillet Height (E) ................................ 8-22
     8.3.2.6 Minimum Fillet Height (F) ............................... 8-23
     8.3.2.7 Solder Thickness (G) ................................... 8-24
     8.3.2.8 End Overlap (J) ........................................... 8-25
     8.3.2.9 Termination Variations .................................... 8-26
     8.3.2.9.1 Mounting on Side (Billboarding) .................... 8-26
     8.3.2.9.2 Mounting Upside Down .................................. 8-28
     8.3.2.9.3 Stacking ................................................ 8-29
     8.3.2.9.4 Solder Width of Side Termination .................. 8-31
     8.3.2.10 Center Terminations ..................................... 8-31
     8.3.2.10.1 Minimum Fillet Height of Side Termination ... 8-32
  8.3.3 Cylindrical End Cap Terminations .......................... 8-33
     8.3.3.1 Side Overhang (A) ....................................... 8-34
     8.3.3.2 End Overhang (B) ........................................ 8-35
     8.3.3.3 End Joint Width (C) ..................................... 8-36
     8.3.3.4 Side Joint Length (D) ................................... 8-37
     8.3.3.5 Maximum Fillet Height (E) ................................ 8-38
     8.3.3.6 Minimum Fillet Height (F) ............................... 8-39
     8.3.3.7 Solder Thickness (G) ................................... 8-40
     8.3.3.8 End Overlap (J) ........................................... 8-41
  8.3.4 Castellated Terminations .................................... 8-42
     8.3.4.1 Side Overhang (A) ....................................... 8-43
     8.3.4.2 End Overhang (B) ........................................ 8-44
     8.3.4.3 Minimum End Joint Width (C) .......................... 8-44
     8.3.4.4 Minimum Side Joint Length (D) ......................... 8-45
     8.3.4.5 Maximum Fillet Height (E) ................................ 8-45
     8.3.4.6 Minimum Fillet Height (F) ............................... 8-46
     8.3.4.7 Solder Thickness (G) ................................... 8-46
  8.3.5 Flat Gull Wing Leads ........................................ 8-47
     8.3.5.1 Side Overhang (A) ....................................... 8-47
     8.3.5.2 Toe Overhang (B) ........................................ 8-51
     8.3.5.3 Minimum End Joint Width (C) .......................... 8-52
     8.3.5.4 Minimum Side Joint Length (D) ......................... 8-54
     8.3.5.5 Maximum Fillet Height (E) ................................ 8-56
     8.3.5.6 Minimum Fillet Height (F) ............................... 8-57
     8.3.5.7 Solder Thickness (G) ................................... 8-58
     8.3.5.8 Coplanarity ............................................... 8-59
  8.3.6 Round or Flattened (Coined) Gull
     Wing Leads ........................................................ 8-60
     8.3.6.1 Side Overhang (A) ....................................... 8-61
     8.3.6.2 Toe Overhang (B) ........................................ 8-62
     8.3.6.3 Minimum End Joint Width (C) .......................... 8-62
     8.3.6.4 Minimum Side Joint Length (D) ......................... 8-63
     8.3.6.5 Maximum Heel Fillet Height (E) ........................ 8-64
     8.3.6.6 Minimum Heel Fillet Height (F) ........................ 8-65
     8.3.6.7 Solder Thickness (G) ................................... 8-66
     8.3.6.8 Minimum Side Joint Height (Q) ......................... 8-66
     8.3.6.9 Coplanarity ............................................... 8-67
  8.3.7 J Leads .......................................................... 8-68
     8.3.7.1 Side Overhang (A) ....................................... 8-68
     8.3.7.2 Toe Overhang (B) ........................................ 8-70
     8.3.7.3 End Joint Width (C) ..................................... 8-70
     8.3.7.4 Side Joint Length (D) ................................... 8-72
     8.3.7.5 Maximum Heel Fillet Height (E) ........................ 8-73
     8.3.7.6 Minimum Heel Fillet Height (F) ........................ 8-74
     8.3.7.7 Solder Thickness (G) ................................... 8-76
     8.3.7.8 Coplanarity ............................................... 8-76
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.8 Butt/I Connections</td>
<td>8-77</td>
</tr>
<tr>
<td>8.3.8.1 Modified Through-Hole Terminations</td>
<td>8-77</td>
</tr>
<tr>
<td>8.3.8.2 Solder Charged Terminations</td>
<td>8-78</td>
</tr>
<tr>
<td>8.3.8.3 Maximum Side Overhang (A)</td>
<td>8-79</td>
</tr>
<tr>
<td>8.3.8.4 Maximum Toe Overhang (B)</td>
<td>8-80</td>
</tr>
<tr>
<td>8.3.8.5 Minimum End Joint Width (C)</td>
<td>8-81</td>
</tr>
<tr>
<td>8.3.8.6 Minimum Side Joint Length (D)</td>
<td>8-82</td>
</tr>
<tr>
<td>8.3.8.7 Maximum Fillet Height (E)</td>
<td>8-82</td>
</tr>
<tr>
<td>8.3.8.8 Minimum Fillet Height (F)</td>
<td>8-83</td>
</tr>
<tr>
<td>8.3.8.9 Solder Thickness (G)</td>
<td>8-84</td>
</tr>
<tr>
<td>8.3.9 Flat Lug Leads</td>
<td>8-85</td>
</tr>
<tr>
<td>8.3.10 Tall Profile Components Having Bottom Only Terminations</td>
<td>8-86</td>
</tr>
<tr>
<td>8.3.11 Inward Formed L-Shaped Ribbon Leads</td>
<td>8-87</td>
</tr>
<tr>
<td>8.3.12 Surface Mount Area Array</td>
<td>8-89</td>
</tr>
<tr>
<td>8.3.12.1 Alignment</td>
<td>8-90</td>
</tr>
<tr>
<td>8.3.12.2 Solder Ball Spacing</td>
<td>8-90</td>
</tr>
<tr>
<td>8.3.12.3 Solder Connections</td>
<td>8-91</td>
</tr>
<tr>
<td>8.3.12.4 Voids</td>
<td>8-93</td>
</tr>
<tr>
<td>8.3.12.5 Underfill/Staking</td>
<td>8-93</td>
</tr>
<tr>
<td>8.3.12.6 Package on Package</td>
<td>8-94</td>
</tr>
<tr>
<td>8.3.13 Bottom Termination Components (BTC)</td>
<td>8-96</td>
</tr>
<tr>
<td>8.3.14 Components with Bottom Thermal Plane Terminations</td>
<td>8-98</td>
</tr>
<tr>
<td>8.3.15 Flattened Post Connections</td>
<td>8-100</td>
</tr>
<tr>
<td>8.3.15.1 Maximum Termination Overhang – Square Solder Land</td>
<td>8-100</td>
</tr>
<tr>
<td>8.3.15.2 Maximum Termination Overhang – Round Solder Land</td>
<td>8-101</td>
</tr>
<tr>
<td>8.3.15.3 Maximum Fillet Height</td>
<td>8-101</td>
</tr>
<tr>
<td>8.3.16 P-Style Connections</td>
<td>8-102</td>
</tr>
<tr>
<td>8.3.16.1 Maximum Side Overhang (A)</td>
<td>8-103</td>
</tr>
<tr>
<td>8.3.16.2 Maximum Toe Overhang (B)</td>
<td>8-103</td>
</tr>
<tr>
<td>8.3.16.3 Minimum End Joint Width (C)</td>
<td>8-104</td>
</tr>
<tr>
<td>8.3.16.4 Minimum Side Joint Length (D)</td>
<td>8-104</td>
</tr>
<tr>
<td>8.3.16.5 Minimum Fillet Height (F)</td>
<td>8-105</td>
</tr>
<tr>
<td>8.4 Specialized SMT Terminations</td>
<td>8-106</td>
</tr>
<tr>
<td>8.5 Surface Mount Connectors</td>
<td>8-107</td>
</tr>
<tr>
<td>8.6 Jumper Wires</td>
<td>8-108</td>
</tr>
<tr>
<td>8.6.1 SMT</td>
<td>8-109</td>
</tr>
<tr>
<td>8.6.1.1 Chip and Cylindrical End Cap Components</td>
<td>8-109</td>
</tr>
<tr>
<td>8.6.1.2 Gull Wing</td>
<td>8-110</td>
</tr>
<tr>
<td>8.6.1.3 J Lead</td>
<td>8-111</td>
</tr>
<tr>
<td>8.6.1.4 Castellations</td>
<td>8-111</td>
</tr>
<tr>
<td>8.6.1.5 Land</td>
<td>8-112</td>
</tr>
<tr>
<td>9 Component Damage</td>
<td>9-1</td>
</tr>
<tr>
<td>9.1 Loss of Metallization</td>
<td>9-2</td>
</tr>
<tr>
<td>9.2 Chip Resistor Element</td>
<td>9-3</td>
</tr>
<tr>
<td>9.3 Leaded/Leadless Devices</td>
<td>9-4</td>
</tr>
<tr>
<td>9.4 Ceramic Chip Capacitors</td>
<td>9-8</td>
</tr>
<tr>
<td>9.5 Connectors</td>
<td>9-10</td>
</tr>
<tr>
<td>9.6 Relays</td>
<td>9-13</td>
</tr>
<tr>
<td>9.7 Transformer Core Damage</td>
<td>9-13</td>
</tr>
<tr>
<td>9.8 Connectors, Handles, Extractors, Latches</td>
<td>9-14</td>
</tr>
<tr>
<td>9.9 Edge Connector Pins</td>
<td>9-15</td>
</tr>
<tr>
<td>9.10 Press Fit Pins</td>
<td>9-16</td>
</tr>
<tr>
<td>9.11 Backplane Connector Pins</td>
<td>9-17</td>
</tr>
<tr>
<td>9.12 Heat Sink Hardware</td>
<td>9-18</td>
</tr>
<tr>
<td>9.13 Threaded Items and Hardware</td>
<td>9-19</td>
</tr>
</tbody>
</table>
### Table of Contents (cont.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Printed Circuit</td>
<td>10-1</td>
</tr>
<tr>
<td>10.1 Non-Soldered Contact Areas</td>
<td>10-2</td>
</tr>
<tr>
<td>10.1.1 Contamination</td>
<td>10-2</td>
</tr>
<tr>
<td>10.1.2 Damage</td>
<td>10-4</td>
</tr>
<tr>
<td>10.2 Laminate Conditions</td>
<td>10-4</td>
</tr>
<tr>
<td>10.2.1 Measling and Crazing</td>
<td>10-5</td>
</tr>
<tr>
<td>10.2.2 Blistering and Delamination</td>
<td>10-7</td>
</tr>
<tr>
<td>10.2.3 Weave Texture/Weave Exposure</td>
<td>10-9</td>
</tr>
<tr>
<td>10.2.4 Haloing</td>
<td>10-10</td>
</tr>
<tr>
<td>10.2.5 Edge Delamination, Nicks and Crazing</td>
<td>10-12</td>
</tr>
<tr>
<td>10.2.6 Burns</td>
<td>10-14</td>
</tr>
<tr>
<td>10.2.7 Bow and Twist</td>
<td>10-15</td>
</tr>
<tr>
<td>10.2.8 Depanelization</td>
<td>10-16</td>
</tr>
<tr>
<td>10.3 Conductors/Lands</td>
<td>10-18</td>
</tr>
<tr>
<td>10.3.1 Reduction</td>
<td>10-18</td>
</tr>
<tr>
<td>10.3.2 Lifted</td>
<td>10-19</td>
</tr>
<tr>
<td>10.3.3 Mechanical Damage</td>
<td>10-21</td>
</tr>
<tr>
<td>10.4 Flexible and Rigid-Flex Printed Circuitry</td>
<td>10-22</td>
</tr>
<tr>
<td>10.4.1 Damage</td>
<td>10-22</td>
</tr>
<tr>
<td>10.4.2 Delamination/Blister</td>
<td>10-24</td>
</tr>
<tr>
<td>10.4.2.1 Flex</td>
<td>10-24</td>
</tr>
<tr>
<td>10.4.2.2 Flex to Stiffener</td>
<td>10-25</td>
</tr>
<tr>
<td>10.4.3 Solder Wicking</td>
<td>10-26</td>
</tr>
<tr>
<td>10.4.4 Attachment</td>
<td>10-27</td>
</tr>
<tr>
<td>10.5 Marking</td>
<td>10-28</td>
</tr>
<tr>
<td>10.5.1 Etched (Including Hand Printing)</td>
<td>10-30</td>
</tr>
<tr>
<td>10.5.2 Screened</td>
<td>10-31</td>
</tr>
<tr>
<td>10.5.3 Stamped</td>
<td>10-33</td>
</tr>
<tr>
<td>10.5.4 Laser</td>
<td>10-34</td>
</tr>
<tr>
<td>10.5.5 Labels</td>
<td>10-35</td>
</tr>
<tr>
<td>10.5.5.1 Bar Coding/Data Matrix</td>
<td>10-35</td>
</tr>
<tr>
<td>10.5.5.2 Readability</td>
<td>10-36</td>
</tr>
<tr>
<td>10.5.5.3 Labels – Adhesion and Damage</td>
<td>10-37</td>
</tr>
<tr>
<td>10.5.5.4 Position</td>
<td>10-37</td>
</tr>
<tr>
<td>10.5.6 Radio Frequency Identification (RFID) Tags</td>
<td>10-38</td>
</tr>
<tr>
<td>10.6 Cleanliness</td>
<td>10-39</td>
</tr>
<tr>
<td>10.6.1 Flux Residues</td>
<td>10-40</td>
</tr>
<tr>
<td>10.6.2 Foreign Object Debris (FOD)</td>
<td>10-41</td>
</tr>
<tr>
<td>10.6.3 Chlorides, Carbonates and White Residues</td>
<td>10-42</td>
</tr>
<tr>
<td>10.6.4 Flux Residues – No-Clean Process – Appearance</td>
<td>10-44</td>
</tr>
<tr>
<td>10.6.5 Surface Appearance</td>
<td>10-45</td>
</tr>
<tr>
<td>10.7 Solder Mask Coating</td>
<td>10-46</td>
</tr>
<tr>
<td>10.7.1 Wrinkling/Cracking</td>
<td>10-47</td>
</tr>
<tr>
<td>10.7.2 Voids, Blisters, Scratches</td>
<td>10-49</td>
</tr>
<tr>
<td>10.7.3 Breakdown</td>
<td>10-50</td>
</tr>
<tr>
<td>10.7.4 Discoloration</td>
<td>10-51</td>
</tr>
<tr>
<td>10.8 Conformal Coating</td>
<td>10-51</td>
</tr>
<tr>
<td>10.8.1 General</td>
<td>10-51</td>
</tr>
<tr>
<td>10.8.2 Coverage</td>
<td>10-52</td>
</tr>
<tr>
<td>10.8.3 Thickness</td>
<td>10-54</td>
</tr>
<tr>
<td>10.8.4 Electrical Insulation Coating</td>
<td>10-55</td>
</tr>
<tr>
<td>10.8.4.1 Coverage</td>
<td>10-55</td>
</tr>
<tr>
<td>10.8.4.2 Thickness</td>
<td>10-55</td>
</tr>
<tr>
<td>10.9 Encapsulation</td>
<td>10-56</td>
</tr>
<tr>
<td>11 Discrete Wiring</td>
<td>11-1</td>
</tr>
<tr>
<td>11.1 Solderless Wrap</td>
<td>11-2</td>
</tr>
<tr>
<td>11.1.1 Number of Turns</td>
<td>11-3</td>
</tr>
<tr>
<td>11.1.2 Turn Spacing</td>
<td>11-4</td>
</tr>
<tr>
<td>11.1.3 End Tails and Insulation Wrap</td>
<td>11-5</td>
</tr>
<tr>
<td>11.1.4 Raised Turns Overlap</td>
<td>11-7</td>
</tr>
<tr>
<td>11.1.5 Connection Position</td>
<td>11-8</td>
</tr>
<tr>
<td>11.1.6 Wire Dress</td>
<td>11-10</td>
</tr>
<tr>
<td>11.1.7 Wire Slack</td>
<td>11-11</td>
</tr>
<tr>
<td>11.1.8 Wire Plating</td>
<td>11-12</td>
</tr>
<tr>
<td>11.1.9 Damaged Insulation</td>
<td>11-13</td>
</tr>
<tr>
<td>11.1.10 Damaged Conductors and Terminals</td>
<td>11-14</td>
</tr>
<tr>
<td>12 High Voltage</td>
<td>12-1</td>
</tr>
<tr>
<td>Appendix A Electrical Conductor Spacing</td>
<td>A-1</td>
</tr>
<tr>
<td>Index</td>
<td>Index-1</td>
</tr>
</tbody>
</table>
The following topics are addressed in this section:

1.1 Scope ................................................................. 1-2
1.2 Purpose ............................................................. 1-3
1.3 Personnel Proficiency ........................................... 1-3
1.4 Classification .......................................................... 1-3
1.5 Definition of Requirements ...................................... 1-3
1.5.1 Acceptance Criteria ............................................. 1-4
1.5.1.1 Target Condition .............................................. 1-4
1.5.1.2 Acceptable Condition ........................................ 1-4
1.5.1.3 Defect Condition ............................................. 1-4
1.5.1.3.1 Disposition .................................................. 1-4
1.5.1.4 Process Indicator Condition ............................. 1-4
1.5.1.4.1 Process Indicator Methodologies .................. 1-4
1.5.1.5 Combined Conditions ..................................... 1-4
1.5.1.6 Conditions Not Specified ................................. 1-5
1.5.1.7 Specialized Designs ......................................... 1-5
1.6 Terms and Definitions ............................................. 1-5
1.6.1 Board Orientation .............................................. 1-5
1.6.1.1 *Primary Side ............................................... 1-5
1.6.2 *Secondary Side ................................................ 1-5
1.6.3 *Solder Source Side .......................................... 1-5
1.6.4 *Solder Destination Side .................................... 1-5
1.6.5 *Cold Solder Connection .................................... 1-5
1.6.6 Electrical Clearance ........................................... 1-5
1.6.7 FOD (Foreign Object Debris) .............................. 1-5
1.6.8 High Voltage ................................................... 1-5
1.6.9 Intrusive Solder ................................................ 1-6
1.6.10 Meniscus (Component) ................................. 1-6
1.6.11 Pin-in-Paste .................................................... 1-6
1.6.12 Solder Balls .................................................... 1-6
1.6.13 Solder Destinations ........................................... 1-6
1.6.14 Wire Diameter .................................................. 1-6
1.6.15 Wire Overlap .................................................... 1-6
1.6.16 Wire Overwrap ............................................... 1-6
1.7 Examples and Illustrations ...................................... 1-6
1.8 Inspection Methodology ........................................... 1-6
1.9 Verification of Dimensions ...................................... 1-6
1.10 Magnification Aids ................................................. 1-6
1.11 Lighting .............................................................. 1-7
1 Acceptability of Electronic Assemblies

Foreword (cont.)

1.1 Scope  This standard is a collection of visual quality acceptability requirements for electronic assemblies. This standard does not provide criteria for cross-section evaluation.

This document presents acceptance requirements for the manufacture of electrical and electronic assemblies. Historically, electronic assembly standards contained a more comprehensive tutorial addressing principles and techniques. For a more complete understanding of this document’s recommendations and requirements, one may use this document in conjunction with IPC-HDBK-001, IPC-AJ-820 and IPC J-STD-001.

The criteria in this standard are not intended to define processes to accomplish assembly operations nor is it intended to authorize repair/modification or change of the customer’s product. For instance, the presence of criteria for adhesive bonding of components does not imply/authorize/require the use of adhesive bonding, and the depiction of a lead wrapped clockwise around a terminal does not imply/authorize/require that all leads/wires be wrapped in the clockwise direction.

Users of this standard should be knowledgeable of the applicable requirements of the document and how to apply them.

Objective evidence of the demonstration of this knowledge should be maintained. Where objective evidence is unavailable, the organization should consider periodic review of personnel skills to determine visual acceptance criteria appropriately.

IPC-A-610 has criteria outside the scope of IPC J-STD-001 defining handling, mechanical and other workmanship requirements. Table 1-1 is a summary of related documents.

<table>
<thead>
<tr>
<th>Document Purpose</th>
<th>Specification Number</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Standard</td>
<td>IPC-2220 (Series)</td>
<td>Design requirements reflecting three levels of complexity (Levels A, B, and C) indicating finer geometries, greater densities, more process steps to produce the product. Component and Assembly Process Guidelines to assist in the design of the bare board and the assembly where the bare board processes concentrate on land patterns for surface mount and the assembly concentrates on surface mount and through-hole principles which are usually incorporated into the design process and the documentation.</td>
</tr>
<tr>
<td>PCB Requirements</td>
<td>IPC-6010 (series)</td>
<td>Requirements and acceptance documentation for rigid, rigid flex, flex and other types of substrates.</td>
</tr>
<tr>
<td>End Item Documentation</td>
<td>IPC-D-325</td>
<td>Documentation depicting bare board specific end product requirements designed by the customer or end item assembly requirements. Details may or may not reference industry specifications or workmanship standards as well as customer’s own preferences or internal standard requirements.</td>
</tr>
<tr>
<td>End Item Standards</td>
<td>IPC-J-STD-001</td>
<td>Requirements for soldered electrical and electronic assemblies depicting minimum end product acceptable characteristics as well as methods for evaluation (test methods), frequency of testing and applicable ability of process control requirements.</td>
</tr>
<tr>
<td>Acceptability Standard</td>
<td>IPC-A-610</td>
<td>Pictorial interpretive document indicating various characteristics of the board and/or assembly as appropriate relating to desirable conditions that exceed the minimum acceptable characteristics indicated by the end item performance standard and reflect various out-of-control (process indicator or defect) conditions to assist the shop process evaluators in judging need for corrective action.</td>
</tr>
<tr>
<td>Training Programs (Optional)</td>
<td>-</td>
<td>Documented training requirements for teaching and learning process procedures and techniques for implementing acceptance requirements of either end item standards, acceptability standards, or requirements detailed on the customer documentation.</td>
</tr>
<tr>
<td>Rework and Repair</td>
<td>IPC-7711/7721</td>
<td>Documentation providing the procedures to accomplish conformal coating and component removal and replacement, solder resist repair, and modification/repair of laminate material, conductors, and plated-through holes.</td>
</tr>
</tbody>
</table>