IPC-A-610E-2010

Acceptability of Electronic Assemblies

Developed by the IPC-A-610 development team including Task Group (7-31b), Task Group Asia (7-31bCN) and Task Group Nordic (7-31bND) of the Product Assurance Committees (7-30 and 7-30CN) of IPC

Supersedes:
IPC-A-610D - February 2005
IPC-A-610C - January 2000
IPC-A-610B - December 1994
IPC-A-610A - March 1990
IPC-A-610 - August 1983

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105
1 Foreword ... 1-1

1.1 Scope .. 1-2

1.2 Purpose .. 1-3

1.3 Classification .. 1-3

1.4 Definition of Requirements .. 1-3
1.4.1 Acceptance Criteria ... 1-3
1.4.1.1 Target Condition .. 1-3
1.4.1.2 Acceptable Condition .. 1-4
1.4.1.3 Defect Condition ... 1-4
1.4.1.3.1 Disposition ... 1-4
1.4.1.3.2 Contact ... 1-5
1.4.1.3.3 Insulators and Thermal Compounds 1-5
1.4.1.3.4 Heatsinks .. 1-5
1.4.1.4 Process Indicator Condition 1-4
1.4.1.4.1 Torque .. 1-4
1.4.1.4.2 Wires ... 1-9
1.4.1.5 Combined Conditions .. 1-4
1.4.1.6 Conditions Not Specified 1-4
1.4.1.7 Specialized Designs .. 1-4

1.5 Terms & Definitions .. 1-4
1.5.1 Board Orientation ... 1-4
1.5.1.1 Primary Side .. 1-4
1.5.1.2 Secondary Side ... 1-5
1.5.1.3 Source Side .. 1-5
1.5.1.4 Destination Side .. 1-5
1.5.2 Cold Solder Connection .. 1-5
1.5.3 Electrical Clearance .. 1-5
1.5.4 High Voltage .. 1-5
1.5.5 Intrusive Solder ... 1-5
1.5.6 Leaching ... 1-5
1.5.7 Meniscus (Component) ... 1-5
1.5.8 Nonfunctional Land .. 1-5
1.5.9 Pin-in-Paste .. 1-5
1.5.10 Wire Diameter ... 1-5
1.5.11 Wire Overwrap ... 1-5
1.5.12 Wire Overlap .. 1-5

1.6 Examples and Illustrations .. 1-5

1.7 Inspection Methodology ... 1-5

1.8 Verification of Dimensions .. 1-6

1.9 Magnification Aids ... 1-6

1.10 Lighting ... 1-6

2 Applicable Documents .. 2-1

2.1 IPC Documents ... 2-1

2.2 Joint Industry Documents ... 2-1

2.3 EOS/ESD Association Documents 2-2

2.4 Electronics Industries Alliance Documents 2-2

2.5 International Electrotechnical Commission Documents ... 2-2

2.6 ASTM ... 2-2

2.7 Technical Publications ... 2-2

3 Handling Electronic Assemblies 3-1

3.1 EOS/ESD Prevention .. 3-2
3.1.1 Electrical Overstress (EOS) 3-3
3.1.2 Electrostatic Discharge (ESD) 3-4
3.1.3 Warning Labels ... 3-5
3.1.4 Protective Materials ... 3-6

3.2 EOS/ESD Safe Workstation/EPA 3-7

3.3 Handling Considerations .. 3-9
3.3.1 Guidelines .. 3-9
3.3.2 Physical Damage .. 3-10
3.3.3 Contamination .. 3-10
3.3.4 Electronic Assemblies .. 3-10
3.3.5 After Soldering .. 3-11
3.3.6 Gloves and Finger Cots .. 3-12

4 Hardware ... 4-1

4.1 Hardware Installation .. 4-2
4.1.1 Electrical Clearance .. 4-2
4.1.2 Interference .. 4-3
4.1.3 Heatsinks .. 4-3
4.1.3.1 Insulators and Thermal Compounds 4-3
4.1.3.2 Contact .. 4-5
4.1.4 Threaded Fasteners ... 4-6
4.1.4.1 Torque .. 4-8
4.1.4.2 Wires ... 4-9

4.2 Jackpoint Mounting .. 4-11
5 Soldering ... 5-1

5.1 Soldering Acceptability Requirements 5-3

5.2 Soldering Anomalies .. 5-4
5.2.1 Exposed Basis Metal .. 5-4
5.2.2 Pin Holes/Blow Holes 5-6
5.2.3 Reflow of Solder Paste 5-7
5.2.4 Nonwetting .. 5-8
5.2.5 Cold/Rosin Connection 5-9
5.2.6 Dewetting .. 5-9
5.2.7 Excess Solder .. 5-10
5.2.7.1 Solder Balls/Solder Fines 5-10
5.2.7.2 Bridging .. 5-12
5.2.7.3 Solder Webbing/Splashes 5-13
5.2.8 Disturbed Solder .. 5-14
5.2.9 Fractured Solder .. 5-15
5.2.10 Solder Projections .. 5-16
5.2.11 Lead Free Fillet Lift .. 5-17
5.2.12 Lead Free Hot Tear/Shrink Hole 5-18
5.2.13 Probe Marks and Other Similar Surface Conditions in Solder Joints 5-19

5.3 Conductor .. 5-18
5.3.1 Deformation .. 5-18
5.3.2 Strand Damage ... 5-19
5.3.3 Strand Separation (Birdcaging) – Presolder 5-20
5.3.4 Strand Separation (Birdcaging) – Post-Solder 6-21
5.3.5 Tinning .. 6-22

5.4 Service Loops .. 5-24

5.5 Terminals – Stress Relief 5-25
5.5.1 Bundle .. 5-25
5.5.2 Lead/Wire Bend .. 5-26

5.6 Terminals – Lead/Wire Placement – General Requirements .. 6-28

5.7 Terminals – Solder – General Requirements 6-30

5.8 Terminals – Turrets and Straight Pins 6-31
5.8.1 Lead/Wire Placement .. 6-31
5.8.2 Solder .. 6-33

5.9 Terminals – Bifurcated ... 6-34
5.9.1 Lead/Wire Placement – Side Route Attachments .. 6-34
5.9.2 Lead/Wire Placement – Bottom and Top Route Attachments .. 6-37
5.9.3 Lead/Wire Placement – Staked Wires 6-38
5.9.4 Solder ... 6-39

5.10 Terminals – Slotted .. 6-42
5.10.1 Lead/Wire Placement .. 6-42
5.10.2 Solder .. 6-43
Table of Contents (cont.)

6.11 Terminals – Pierced/Perforated 6-44
 6.11.1 Lead/Wire Placement 6-44
 6.11.2 Solder .. 6-46

6.12 Terminals – Hook .. 6-47
 6.12.1 Lead/Wire Placement 6-47
 6.12.2 Solder .. 6-49

6.13 Terminals – Solder Cups 6-50
 6.13.1 Lead/Wire Placement 6-50
 6.13.2 Solder .. 6-52

6.14 Terminals – AWG 30 and Smaller Diameter Wires 6-54
 6.14.1 Lead/Wire Placement 6-54

6.15 Terminals – Series Connected 6-55

6.16 Terminals – Edge Clip – Position 6-56

7 Through Hole Technology .. 7-1
 7.1 Component Mounting 7-2
 7.1.1 Orientation .. 7-2
 7.1.1.1 Horizontal .. 7-3
 7.1.1.2 Vertical ... 7-5
 7.1.2 Lead Forming .. 7-6
 7.1.2.1 Bends ... 7-6
 7.1.2.2 Stress Relief .. 7-8
 7.1.2.3 Damage ... 7-10
 7.1.3 Leads Crossing Conductors 7-11
 7.1.4 Hole Obstruction 7-12
 7.1.5 DIP/SIP Devices and Sockets 7-13
 7.1.6 Radial Leads – Vertical 7-15
 7.1.6.1 Spacers .. 7-16
 7.1.7 Radial Leads – Horizontal 7-18
 7.1.8 Connectors .. 7-19
 7.1.8.1 Right Angle .. 7-21
 7.1.8.2 Vertical Shrouded Pin Headers and Vertical Receptacle Connectors .. 7-22
 7.1.9 High Power .. 7-23
 7.1.10 Conductive Cases 7-24

7.2 Component Securing .. 7-25
 7.2.1 Mounting Clips .. 7-25
 7.2.2 Adhesive Bonding 7-27
 7.2.2.1 Adhesive Bonding – Nonelevated Components .. 7-28
 7.2.2.2 Adhesive Bonding – Elevated Components .. 7-31
 7.2.3 Wire Hold Down .. 7-32

7.3 Supported Holes .. 7-33
 7.3.1 Axial Ledged – Horizontal 7-33
 7.3.2 Axial Ledged – Vertical 7-35
 7.3.3 Wire/Lead Protrusion 7-37
 7.3.4 Wire/Lead Clinches 7-38
 7.3.5 Solder .. 7-40
 7.3.5.1 Vertical fill (A) 7-43
 7.3.5.2 Primary Side – Lead to Barrel (B) 7-45
 7.3.5.3 Primary Side – Land Area Coverage (C) 7-47
 7.3.5.4 Secondary Side – Lead to Barrel (D) 7-48
 7.3.5.5 Secondary Side – Land Area Coverage (E) 7-49
 7.3.5.6 Solder Conditions – Solder in Lead Bend 7-50
 7.3.5.7 Solder Conditions – Touching Through-Hole Component Body ... 7-51
 7.3.5.8 Solder Conditions – Meniscus in Solder 7-52
 7.3.5.9 Lead Cutting after Soldering 7-53
 7.3.5.10 Coated Wire Insulation in Solder 7-54
 7.3.5.11 Interfacial Connection without Lead – Vias 7-55
 7.3.5.12 Board in Board 7-56

7.4 Unsupported Holes .. 7-59
 7.4.1 Axial Leads – Horizontal 7-59
 7.4.2 Axial Leads – Vertical 7-60
 7.4.3 Wire/Lead Protrusion 7-61
 7.4.4 Wire/Lead Clinches 7-62
 7.4.5 Solder .. 7-64
 7.4.6 Lead Cutting after Soldering 7-66

7.5 Jumper Wires .. 7-67
 7.5.1 Wire Selection .. 7-67
 7.5.2 Wire Routing .. 7-68
 7.5.3 Wire Staking ... 7-70
 7.5.4 Supported Holes .. 7-72
 7.5.4.1 Lead in Hole .. 7-72
 7.5.5 Wrapped Attachment 7-73
 7.5.6 Lap Soldered ... 7-73
Table of Contents (cont.)

8 Surface Mount Assemblies 8-1

8.1 Staking Adhesive .. 8-3
 8.1.1 Component Bonding 8-3
 8.1.2 Mechanical Strength 8-4

8.2 SMT Leads ... 8-7
 8.2.1 Damage .. 8-7
 8.2.2 Flattening .. 8-7

8.3 SMT Connections .. 8-8

8.3.1 Chip Components – Bottom Only Terminations 8-8
 8.3.1.1 Side Overhang (A) 8-9
 8.3.1.2 End Overhang (B) 8-10
 8.3.1.3 End Joint Width (C) 8-11
 8.3.1.4 Side Joint Length (D) 8-12
 8.3.1.5 Maximum Fillet Height (E) 8-13
 8.3.1.6 Minimum Fillet Height (F) 8-13
 8.3.1.7 Solder Thickness (G) 8-14
 8.3.1.8 End Overlap (J) 8-14

8.3.2 Rectangular or Square End Chip Components – 1, 3 or 5 Side Terminations 8-15
 8.3.2.1 Side Overhang (A) 8-16
 8.3.2.2 End Overhang (B) 8-18
 8.3.2.3 End Joint Width (C) 8-19
 8.3.2.4 Side Joint Length (D) 8-21
 8.3.2.5 Maximum Fillet Height (E) 8-22
 8.3.2.6 Minimum Fillet Height (F) 8-23
 8.3.2.7 Thickness (G) 8-24
 8.3.2.8 End Overlap (J) 8-25
 8.3.2.9 Termination Variations 8-26
 8.3.2.9.1 Mounting on Side (Billboarding) 8-26
 8.3.2.9.2 Mounting Upside Down 8-28
 8.3.2.9.3 Stacking 8-29
 8.3.2.9.4 Tombstoning 8-30
 8.3.2.10 3 Terminations 8-31
 8.3.2.10.1 3 Terminations – Solder Width 8-31
 8.3.2.10.2 3 Terminations – Minimum Fillet Height 8-32

8.3.3 Cylindrical End Cap Terminations 8-33
 8.3.3.1 Side Overhang (A) 8-34
 8.3.3.2 End Overhang (B) 8-35
 8.3.3.3 End Joint Width (C) 8-36
 8.3.3.4 Side Joint Length (D) 8-37
 8.3.3.5 Maximum Fillet Height (E) 8-38
 8.3.3.6 Minimum Fillet Height (F) 8-39
 8.3.3.7 Solder Thickness (G) 8-40
 8.3.3.8 End Overlap (J) 8-41

8.3.4 Castellated Terminations 8-42
 8.3.4.1 Side Overhang (A) 8-43
 8.3.4.2 End Overhang (B) 8-44
 8.3.4.3 Minimum End Joint Width (C) 8-44
 8.3.4.4 Minimum Side Joint Length (D) 8-45
 8.3.4.5 Maximum Fillet Height (E) 8-45
 8.3.4.6 Minimum Fillet Height (F) 8-46
 8.3.4.7 Solder Thickness (G) 8-46

8.3.5 Flat Gull Wing Leads 8-47
 8.3.5.1 Side Overhang (A) 8-47
 8.3.5.2 Toe Overhang (B) 8-51
 8.3.5.3 Minimum End Joint Width (C) 8-52
 8.3.5.4 Minimum Side Joint Length (D) 8-54
 8.3.5.5 Maximum Heel Fillet Height (E) 8-56
 8.3.5.6 Minimum Heel Fillet Height (F) 8-57
 8.3.5.7 Solder Thickness (G) 8-58
 8.3.5.8 Coplanarity 8-59

8.3.6 Round or Flattened (Coined) Gull Wing Leads 8-60
 8.3.6.1 Side Overhang (A) 8-61
 8.3.6.2 Toe Overhang (B) 8-62
 8.3.6.3 Minimum End Joint Width (C) 8-62
 8.3.6.4 Minimum Side Joint Length (D) 8-63
 8.3.6.5 Maximum Heel Fillet Height (E) 8-64
 8.3.6.6 Minimum Heel Fillet Height (F) 8-65
 8.3.6.7 Solder Thickness (G) 8-66
 8.3.6.8 Minimum Side Joint Height (Q) 8-66
 8.3.6.9 Coplanarity 8-67

8.3.7 J Leads .. 8-68
 8.3.7.1 Side Overhang (A) 8-68
 8.3.7.2 Toe Overhang (B) 8-70
 8.3.7.3 End Joint Width (C) 8-70
 8.3.7.4 Side Joint Length (D) 8-72
 8.3.7.5 Maximum Heel Fillet Height (E) 8-73
 8.3.7.6 Minimum Heel Fillet Height (F) 8-74
 8.3.7.7 Solder Thickness (G) 8-76
 8.3.7.8 Coplanarity 8-76
8.3.8 Butt/I Connections ... 8-77
 8.3.8.1 Maximum Side Overhang (A) 8-77
 8.3.8.2 Maximum Toe Overhang (B) 8-78
 8.3.8.3 Minimum End Joint Width (C) 8-78
 8.3.8.4 Minimum Side Joint Length (D) 8-79
 8.3.8.5 Maximum Fillet Height (E) 8-79
 8.3.8.6 Minimum Fillet Height (F) 8-80
 8.3.8.7 Solder Thickness (G) 8-80

8.3.9 Flat Lug Leads .. 8-81

8.3.10 Tall Profile Components Having
 Bottom Only Terminations 8-82

8.3.11 Inward Formed L-Shaped Ribbon Leads 8-83

8.3.12 Surface Mount Area Array 8-85
 8.3.12.1 Alignment .. 8-86
 8.3.12.2 Solder Ball Spacing 8-86
 8.3.12.3 Solder Connections 8-87
 8.3.12.4 Voids .. 8-89
 8.3.12.5 Underfill/Staking 8-89
 8.3.12.6 Package on Package 8-90

8.3.13 Bottom Termination Components (BTC) 8-92

8.3.14 Components with Bottom Thermal
 Plane Terminations ... 8-94

8.3.15 Flattened Post Connections 8-96
 8.3.15.1 Maximum Termination Overhang –
 Square Solder Land 8-96
 8.3.15.2 Maximum Termination Overhang –
 Round Solder Land ... 8-97
 8.3.15.3 Maximum Fillet Height 8-97

8.4 Specialized SMT Terminations 8-98

8.5 Surface Mount Connectors 8-99

8.6 Jumper Wires .. 8-100

8.6.1 SMT .. 8-101
 8.6.1.1 Chip and Cylindrical End Cap Components .. 8-101
 8.6.1.2 Gull Wing .. 8-102
 8.6.1.3 J Lead ... 8-103
 8.6.1.4 Castellations ... 8-103
 8.6.1.5 Land .. 8-104

8.12 Heat Sink Hardware ... 9-12
Table of Contents (cont.)

10 Printed Circuit Boards and Assemblies 10-1

10.1 Gold Surface Contact Area 10-2

10.2 Laminate Conditions 10-4
10.2.1 Measling and Crazing 10-5
10.2.2 Blistering and Delamination 10-7
10.2.3 Weave Texture/Weave Exposure 10-9
10.2.4 Haloing and Edge Delamination 10-10
10.2.5 Burns ... 10-12
10.2.6 Bow and Twist 10-13
10.2.7 Depanelization 10-14

10.3 Conductors/Lands 10-16
10.3.1 Reduction in Cross-Sectional Area 10-16
10.3.2 Lifted Pads/Lands 10-17
10.3.3 Mechanical Damage 10-19

10.4 Flexible and Rigid-Flex Printed Circuitry 10-20
10.4.1 Damage .. 10-20
10.4.2 Delamination ... 10-22
10.4.3 Discoloration .. 10-23
10.4.4 Solder Wicking 10-24
10.4.5 Attachment ... 10-25

10.5 Marking .. 10-26
10.5.1 Etched (Including Hand Printing) 10-26
10.5.2 Screened .. 10-29
10.5.3 Stamped ... 10-31
10.5.4 Laser ... 10-32
10.5.5 Labels .. 10-34
10.5.5.1 Bar Coding ... 10-34
10.5.5.2 Readability .. 10-34
10.5.5.3 Adhesion and Damage 10-35
10.5.5.4 Position ... 10-35
10.5.6 Using Radio Frequency Identification (RFID) Tags 10-36

10.6 Cleanliness ... 10-37
10.6.1 Flux Residues ... 10-38
10.6.2 Particulate Matter 10-39

10.6.3 Chlorides, Carbonates and White Residues 10-40
10.6.4 Flux Residues – No-Clean Process – Appearance 10-42
10.6.5 Surface Appearance 10-43

10.7 Solder Mask Coating 10-44
10.7.1 Wrinkling/Cracking 10-45
10.7.2 Voids, Blisters, Scratches 10-47
10.7.3 Breakdown ... 10-48
10.7.4 Discoloration ... 10-49

10.8 Conformal Coating 10-49
10.8.1 General .. 10-49
10.8.2 Coverage ... 10-50
10.8.3 Thickness ... 10-52

10.9 Encapsulation ... 10-53

11 Discrete Wiring .. 11-1

11.1 Solderless Wrap 11-2
11.1.1 Number of Turns 11-3
11.1.2 Turn Spacing .. 11-4
11.1.3 End Tails, Insulation Wrap 11-5
11.1.4 Raised Turns Overlap 11-7
11.1.5 Connection Position 11-8
11.1.6 Wire Dress .. 11-10
11.1.7 Wire Slack ... 11-11
11.1.8 Wire Plating .. 11-12
11.1.9 Damaged Insulation 11-13
11.1.10 Damaged Conductors & Terminals 11-14

11.2 Component Mounting – Connector Wire Dress Strain/Stress Relief 11-15

12 High Voltage .. 12-1

Appendix A Electrical Conductor Spacing A-1

Index .. Index-1
1 Acceptability of Electronic Assemblies

Foreword

The following topics are addressed in this section:

1.1 Scope

1.2 Purpose

1.3 Classification

1.4 Definition of Requirements
 1.4.1 Acceptance Criteria
 1.4.1.1 Target Condition
 1.4.1.2 Acceptable Condition
 1.4.1.3 Defect Condition
 1.4.1.3.1 Disposition
 1.4.1.4 Process Indicator Condition
 1.4.1.4.1 Process Indicator Methodologies
 1.4.1.5 Combined Conditions
 1.4.1.6 Conditions Not Specified
 1.4.1.7 Specialized Designs

1.5 Terms & Definitions
 1.5.1 Board Orientation
 1.5.1.1 *Primary Side
 1.5.1.2 *Secondary Side
 1.5.1.3 Solder Source Side
 1.5.1.4 Solder Destination Side
 1.5.2 *Cold Solder Connection
 1.5.3 Electrical Clearance
 1.5.4 High Voltage
 1.5.5 Intrusive Solder
 1.5.6 *Leaching
 1.5.7 Meniscus (Component)
 1.5.8 *Nonfunctional Land
 1.5.9 Pin-in-Paste
 1.5.10 Wire Diameter
 1.5.11 Wire Overwrap
 1.5.12 Wire Overlap

1.6 Examples and Illustrations

1.7 Inspection Methodology

1.8 Verification of Dimensions

1.9 Magnification Aids

1.10 Lighting
1 Acceptability of Electronic Assemblies

Foreword

If a conflict occurs between the English and translated versions of this document, the English version will take precedence.

1.1 Scope
This standard is a collection of visual quality acceptability requirements for electronic assemblies.

This document presents acceptance requirements for the manufacture of electrical and electronic assemblies. Historically, electronic assembly standards contained a more comprehensive tutorial addressing principles and techniques. For a more complete understanding of this document’s recommendations and requirements, one may use this document in conjunction with IPC-HDBK-001, IPC-AJ-820, and IPC J-STD-001.

The criteria in this standard are not intended to define processes to accomplish assembly operations nor is it intended to authorize repair/modification or change of the customer’s product. For instance, the presence of criteria for adhesive bonding of components does not imply/authorize/require the use of adhesive bonding, and the depiction of a lead wrapped clockwise around a terminal does not imply/authorize/require that all leads/wires be wrapped in the clockwise direction.

Users of this standard should be knowledgeable of the applicable requirements of the document and how to apply them. Objective evidence of the demonstration of this knowledge should be maintained. Where objective evidence is unavailable, the organization should consider periodic review of personnel skills to determine visual acceptance criteria appropriately.

IPC-A-610 has criteria outside the scope of IPC J-STD-001 defining handling, mechanical and other workmanship requirements. Table 1-1 is a summary of related documents. IPC-AJ-820 is a supporting document that provides information regarding the intent of this specification content and explains or amplifies the technical rationale for transition of limits through Target to Defect condition criteria. In addition, supporting information is provided to give a broader understanding of the process considerations that are related to performance but not commonly distinguishable through visual assessment methods.

Table 1-1 Summary of Related Documents

<table>
<thead>
<tr>
<th>Document Purpose</th>
<th>Spec.#</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Standard</td>
<td>IPC-2220 (Series)</td>
<td>Design requirements reflecting three levels of complexity (Levels A, B, and C) indicating finer geometries, greater densities, more process steps to produce the product. Component and Assembly Process Guidelines to assist in the design of the bare board and the assembly where the bare board processes concentrate on land patterns for surface mount and the assembly concentrates on surface mount and through-hole principles which are usually incorporated into the design process and the documentation.</td>
</tr>
<tr>
<td>End Item Documentation</td>
<td>IPC-D-325</td>
<td>Documentation depicting bare board specific end product requirements designed by the customer or end item assembly requirements. Details may or may not reference industry specifications or workmanship standards as well as customer’s own preferences or internal standard requirements.</td>
</tr>
<tr>
<td>End Item Standards</td>
<td>IPC J-STD-001</td>
<td>Requirements for soldered electrical and electronic assemblies depicting minimum end product acceptable characteristics as well as methods for evaluation (test methods), frequency of testing and applicable ability of process control requirements.</td>
</tr>
<tr>
<td>Acceptability Standard</td>
<td>IPC-A-610</td>
<td>Pictorial interpretive document indicating various characteristics of the board and/or assembly as appropriate relating to desirable conditions that exceed the minimum acceptable characteristics indicated by the end item performance standard and reflect various out-of-control (process indicator or defect) conditions to assist the shop process evaluators in judging need for corrective action.</td>
</tr>
<tr>
<td>Training Programs (Optional)</td>
<td>IPC-7711/7721</td>
<td>Documented training requirements for teaching and learning process procedures and techniques for implementing acceptance requirements of either end item standards, acceptability standards, or requirements detailed on the customer documentation.</td>
</tr>
<tr>
<td>Rework and Repair</td>
<td></td>
<td>Documentation providing the procedures to accomplish conformal coating and component removal and replacement, solder resist repair, and modification/repair of laminate material, conductors, and plated-through holes.</td>
</tr>
</tbody>
</table>
The explanations provided in IPC-AJ-820 should be useful in determining disposition of conditions identified as Defect, processes associated with Process Indicators, as well as answering questions regarding clarification in use and application for defined content of this specification. Contractual reference to IPC-A-610 does not additionally impose the content of IPC-AJ-820 unless specifically referenced in contractual documentation.

1.2 Purpose
The visual standards in this document reflect the requirements of existing IPC and other applicable specifications. In order for the user to apply and use the content of this document, the assembly/product should comply with other existing IPC requirements, such as IPC-7351, IPC-2220 (Series), IPC-6010 (Series) and IPC-A-600. If the assembly does not comply with these or with equivalent requirements, the acceptance criteria shall be defined between the customer and supplier.

The illustrations in this document portray specific points noted in the title of each page. A brief description follows each illustration. It is not the intent of this document to exclude any acceptable procedure for component placement or for applying flux and solder used to make the electrical connection; however, the methods used shall produce completed solder connections conforming to the acceptability requirements described in this document.

In the case of a discrepancy, the description or written criteria always takes precedence over the illustrations.

1.3 Classification
Accept and/or reject decisions shall be based on applicable documentation such as contracts, drawings, specifications, standards and reference documents. Criteria defined in this document reflect three classes, which are as follows:

Class 1 — General Electronic Products
Includes products suitable for applications where the major requirement is function of the completed assembly.

Class 2 — Dedicated Service Electronic Products
Includes products where continued performance and extended life is required, and for which uninterrupted service is desired but not critical. Typically the end-use environment would not cause failures.

Class 3 — High Performance Electronic Products
Includes products where continued high performance or performance-on-demand is critical, equipment downtime cannot be tolerated, end-use environment may be uncommonly harsh, and the equipment must function when required, such as life support or other critical systems.

The customer (user) has the ultimate responsibility for identifying the class to which the assembly is evaluated. If the user and manufacturer do not establish and document the acceptance class, the manufacturer may do so.

1.4 Definition of Requirements
This document provides acceptance criteria for completed electronic assemblies. Where a requirement is presented that cannot be defined by the acceptable, process indicator, and defect conditions, the word "shall" is used to identify the requirement. The word "shall" in this document invokes a requirement for manufacturers of all classes or product, and failure to comply with the requirement is a noncompliance to this standard.

All products shall meet the requirements of the assembly drawing(s)/documentation and the requirements for the applicable product class specified herein. Missing hardware or components are a Defect for all classes.

1.4.1 Acceptance Criteria
When IPC-A-610 is cited or required by contract as a stand-alone document for inspection and/or acceptance, the requirements of IPC J-STD-001 "Requirements for Soldered Electrical and Electronic Assemblies" do not apply unless separately and specifically required.

In the event of conflict, the following order of precedence applies:

1. Procurement as agreed and documented between customer and supplier.
2. Master drawing or master assembly drawing reflecting the customer’s detailed requirements.
3. When invoked by the customer or per contractual agreement, IPC-A-610.

When documents other than IPC-A-610 are cited, the order of precedence shall be defined in the procurement documents.

Criteria are given for each class in four levels of acceptance: Target Condition, Acceptable Condition, and either Defect Condition or Process Indicator Condition.

1.4.1.1 Target Condition
A condition that is close to perfect/preferred, however, it is a desirable condition and not always achievable and may not be necessary to ensure reliability of the assembly in its service environment.