IPC-9151D
2012 - May

Process Capability, Quality, and Relative Reliability (PCQR²) Benchmark Test Standard and Database

Supersedes IPC-9151C
May 2010

A standard developed by IPC
In May 1995 the IPC’s Technical Activities Executive Committee (TAEC) adopted Principles of Standardization as a guiding principle of IPC’s standardization efforts.

Standards Should:
- Show relationship to Design for Manufacturability (DFM) and Design for the Environment (DFE)
- Minimize time to market
- Contain simple (simplified) language
- Just include spec information
- Focus on end product performance
- Include a feedback system on use and problems for future improvement

Standards Should Not:
- Inhibit innovation
- Increase time-to-market
- Keep people out
- Increase cycle time
- Tell you how to make something
- Contain anything that cannot be defended with data

Notice

IPC Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of IPC from manufacturing or selling products not conforming to such Standards and Publication, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than IPC members, whether the standard is to be used either domestically or internationally.

Recommended Standards and Publications are adopted by IPC without regard to whether their adoption may involve patents on articles, materials, or processes. By such action, IPC does not assume any liability to any patent owner, nor do they assume any obligation whatever to parties adopting the Recommended Standard or Publication. Users are also wholly responsible for protecting themselves against all claims of liabilities for patent infringement.

IPC Position Statement on Specification Revision Change

It is the position of IPC’s Technical Activities Executive Committee that the use and implementation of IPC publications is voluntary and is part of a relationship entered into by customer and supplier. When an IPC publication is updated and a new revision is published, it is the opinion of the TAEC that the use of the new revision as part of an existing relationship is not automatic unless required by the contract. The TAEC recommends the use of the latest revision. Adopted October 6, 1998

Why is there a charge for this document?

Your purchase of this document contributes to the ongoing development of new and updated industry standards and publications. Standards allow manufacturers, customers, and suppliers to understand one another better. Standards allow manufacturers greater efficiencies when they can set up their processes to meet industry standards, allowing them to offer their customers lower costs.

IPC spends hundreds of thousands of dollars annually to support IPC’s volunteers in the standards and publications development process. There are many rounds of drafts sent out for review and the committees spend hundreds of hours in review and development. IPC’s staff attends and participates in committee activities, typesets and circulates document drafts, and follows all necessary procedures to qualify for ANSI approval.

IPC’s membership dues have been kept low to allow as many companies as possible to participate. Therefore, the standards and publications revenue is necessary to complement dues revenue. The price schedule offers a 50% discount to IPC members. If your company buys IPC standards and publications, why not take advantage of this and the many other benefits of IPC membership as well? For more information on membership in IPC, please visit www.ipc.org or call 847/597-2872.

Thank you for your continued support.
Printed Board Process Capability, Quality, and Relative Reliability (PCQR²) Benchmark Test Standard and Database

Developed by the PCQR² Subcommittee (D-36) of the Rigid Printed Board Committee (D-30) of IPC

Supersedes:
IPC-9151C - May 2010
IPC-9151B - February 2007
IPC-9151A - May 2003
IPC-9151 - June 2002

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105
Acknowledgment

Any document involving a complex technology draws material from a vast number of sources. While the principal members of the IPC PCQR² Subcommittee (D-36) of the Rigid Printed Board Committee (D-30) are shown below, it is not possible to include all of those who assisted in the evolution of this standard. To each of them, the members of the IPC extend their gratitude.

Rigid Printed Board Committee
Chair
Vicka White
Honeywell Inc. - Air Transport Systems
Vice-Chair
Debora Obitz
Trace Laboratories-East

IPC PCQR² Subcommittee
Chair
Gary Long
Intel Corporation
Vice-Chair
Michael P. Miller
NSWC Crane

Technical Liaison of the IPC Board of Directors
Dongkai Shangguan
Flextronics International
Shane Whiteside
TTM Technologies

IPC PCQR² Subcommittee
Greg Alexander, Ascentech, LLC
Mark Anselmi, Gorilla Circuits, Inc.
Lance Auer, Raytheon Missile Systems
Wendi Boger, DDi Corp.
Scott A. Bowles, L-3 Fuzing and Ordnance Systems
Casimir Budzinski, Safari Circuits Inc.
Mark Buechner, BAE Systems
Mike Busby, KCA Electronics
Denise Chevalier, Amphenol Printed Circuits, Inc.
Christine Coapman, Delphi Electronics and Safety
Tom Coghlan, Bare Board Group
David J. Corbett, Defense Supply Center Columbus
Robert Davidson Bare Board Group
William C. Dieffenbacher, BAE Systems Platform Solutions
Brett Dobens, Gorilla Circuits, Inc.
C. Don Dupriest, Lockheed Martin Missiles & Fire Control
Patricia S. Dupuis, Raytheon Company
Timothy A. Estes, Conductor Analysis Technologies, Inc.
Gary M. Ferrari, FTG Circuits
Lionel Fullwood, WKK Distribution Ltd.
Mahendra S. Gandhi, Northrop Grumman Aerospace Systems
Stephen E. Garrett, Sandia National Labs Albuquerque
Reza Ghaffarian, Jet Propulsion Laboratory
Ty Gragg, Unicircuit Inc.
Hue Green, Lockheed Martin Space Systems Company
Michael R. Green, Lockheed Martin Space Systems Company
Alisha A. Groop, Lockheed Martin Space Systems Company
Philip Henault, Raytheon Company
Mike Hill, DDi Corp.
Greg Hurst, BAE Systems
Rajesh C. Kumar, DDi Corp.
Mark Lecuyer, Raytheon Systems Company
Becky Lewis, Space Exploration Technologies
Jeff Lewis, Holaday Circuits Inc.
Clifford R. Maddox, Boeing Company
Brian D. Madsen, Continental Automotive Systems
Kenneth Manning, Raytheon Company
Tim McKliget, Holaday Circuits Inc.
Peter Menuez, L-3 Communications - Cincinnati Electronics

Peter Navarro, BAE Systems
Robert Neves, Microtek Laboratories
Steven M. Nolan, Lockheed Martin Maritime Systems & Sensors
Mark R. Northrup, IEC Electronics Corp.
Gerard O’Brien, Solderability Testing & Solutions, Inc.
Patrick O’Keefe, Holaday Circuits Inc.
Al Onderick, National Instruments
Mark W. Osborn, Colonial Circuits Inc.
Michael Padduck, Boeing Company
Greg Papandrew, Bare Board Group
Stephen G. Pierce, SGP Ventures, Inc.
Frank Porter, Coastal Technical Services
John M. Radman, Trace Laboratories - Denver
Randy R. Reed, Viasystems Group, Inc.
Paul Reid, PWB Interconnect Solutions Inc.
Ronald Rhodes, Conductor Analysis Technologies, Inc.
Jose Rios, Endicott Interconnect Technologies Inc
Nef Rios, Cosmotronic
Edward Sandor, Taconic Advanced Dielectric Division
Karl Sauter, Oracle America, Inc.
Joseph Schmidt, Raytheon Missile Systems
Jeff Seekatz, Raytheon Company
Gilbert Shelby, Raytheon Systems Company
Robert Sheldon, Pioneer Circuits Inc.

Russell S. Shepherd, Microtek Laboratories
Lowell Sherman, Defense Supply Center Columbus
Jeff Shubrooks, Raytheon Company
Valerie A. St. Cyr, Teradyne Inc.
Greg Vorhis, Coastal Technical Services

Matthew Walsh, NSWC Crane
Vicka White, Honeywell Inc. Air Transport Systems
Dewey Whittaker, Honeywell Inc. Air Transport Systems
David L. Wolf, Conductor Analysis Technologies, Inc.
Table of Contents

1 SCOPE .. 1
1.1 Purpose .. 1
1.2 Documentation Hierarchy ... 1
1.3 Definition of Terms ... 1
1.4 Applicable Documents .. 2

2 PROCESS SUMMARY ... 2
2.1 Introduction ... 2
2.2 Process Steps ... 2

3 PROCESS CAPABILITY PANEL DESIGNS 2
3.1 Design Library ... 2
3.2 Panel Layouts ... 2
3.3 Test Modules and Coupons ... 2
3.4 Manufacturing Requirements 2

4 TEST AND ANALYSIS ... 3
4.1 Testing and Data Analysis ... 3
4.2 Via Reliability and Conductive Anodic Filament Testing ... 3
4.2.1 Assembly Simulation ... 3
4.2.2 Via Reliability Testing ... 3
4.2.3 Conductive Anodic Filament Testing 3

5 DATABASE .. 4
5.1 Data .. 4
5.2 Database Access .. 4

6 UPDATES AND REVISIONS ... 4

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3-1</td>
<td>Test Module Statistical Attributes</td>
<td>3</td>
</tr>
<tr>
<td>Table 4-1</td>
<td>Measurements</td>
<td>3</td>
</tr>
<tr>
<td>Table 4-2</td>
<td>HATS Cycle</td>
<td>3</td>
</tr>
<tr>
<td>Table 4-3</td>
<td>Conductive Anodic Filament Test Conditions</td>
<td>3</td>
</tr>
</tbody>
</table>
1 SCOPE

1.1 Purpose The purpose of this document is to define the Process Capability, Quality, and Relative Reliability (PCQR²) Benchmark Test Standard and Database Program used for the evaluation of printed board manufacturing processes. This is in accordance with The National Technology Roadmap for Electronic Interconnections 2000/2001 published by IPC, which states that “For a company to efficiently manage its supply chain it must identify the capability of its suppliers and make certain that their capability for manufacturing a product is consistent with the needs of the customer.”

1.2 Documentation Hierarchy All other IPC documents take precedence over this document. This document was developed by the IPC D-36 Subcommittee of the Rigid Printed Board Committee (D-30) of IPC, and describes the process to evaluate the manufacturing process capability of printed board fabricators for certain key features.

1.3 Definition of Terms The definition of all terms used herein shall be as specified in IPC-T-50 and as defined below.

Analysis Report Detailed statistical data on each fabricator’s database submission.

Comparison Report Comparative statistical data of each fabricator participating in the database.

Conductor Analysis Technologies, Inc. (CAT) The company providing and controlling the intellectual property associated with the process capability panel designs, test methods, data analysis techniques, and the database.

Database Submission A set of process capability panels submitted by a fabricator for testing, data analysis, and inclusion in the database.

Database Subscriber A company or an organization, or division(s) thereof, associated with the electronics industry that obtains access to the database through an annual subscription from IPC.

Database Supplier A fabricator who submits a set of process capability panels for testing, data analysis, and inclusion in the database.

Design Requirements File The file used to detail the specifications and manufacturing requirements of each process capability panel design.

Design Library The family of process capability panel designs developed by the IPC D-36 Subcommittee.

Fabricator A specific company’s or organization’s facility that manufactures printed boards.

PCQR² Database The electronic storage medium for the data and reports generated from the testing of process capability panels.

Peer Report Comparative data showing participating fabricator performance with respect to peers.

Process Capability Data The data generated from the testing of process capability panels.

Process Capability Panel A parametric test panel that is comprised of test modules designed to evaluate specific features of printed boards.

Submission Form The information provided by fabricators upon submitting a set of process capability panels to the database.

Subscription License Agreement The method used by subscribers to gain access to the database which is available at www.pcbquality.com.

Test Module The individual element of a process capability panel.
1.4 **Applicable Documents** The following specifications of the revision in effect at the time of order form a part of this document to the extent specified herein.

IPC-TM-650 Test Methods Manual\(^1\)

2.6.27 Thermal Stress, Convection Reflow Assembly Simulation

IPC-T-50 Terms and Definitions for Interconnecting and Packaging Electronic Circuits

2 PROCESS SUMMARY

2.1 Introduction

Many printed board users have developed internal processes to evaluate the capabilities of their printed board fabricators. As a result, fabricators often receive requests from multiple customers to manufacture test panels as part of qualification procedures. The PCQR\(^2\) database program provides an industry standard for the design of these test panels. The resulting data provides subscribers with the ability to review detailed results from individual fabricators, to compare the capabilities of multiple fabricators, and to eliminate multiple or redundant requests to fabricators.

2.2 Process Steps

1. At the request of a database subscriber(s) or on their own behalf, fabricators **shall** download the appropriate process capability panel designs, associated requirements files, and submission forms from the design library at www.pcbquality.com.

2. The fabricator manufactures the process capability panels using their standard processes per the specifications and requirements outlined in the design requirements file and AABUS.

3. The fabricator completes the submission form as instructed in the requirements file, and ships all panels at one time. Testing will not begin until all panels and the submission form have been received.

4. CAT or a third party facility licensed by IPC performs the required testing of the process capability panels. All data analysis and report generation **shall** be performed by CAT.

5. Reports and summary information are posted to the database at www.pcbquality.com.

6. Current subscribers are informed of the posting and of the fabricator’s identity within the database.

7. The fabricator is provided with a copy of their analysis report and an applicable “peer report” for their submission.

8. The process capability panels are not the property of CAT or IPC, and if requested will be returned to the owner when the testing and data analysis has been completed. The panels will be stored for a period of two months from the posting of the data, after which time CAT may dispose of the panels. Unclaimed panels may be used by CAT and/or IPC for other committee-approved activities.

3 PROCESS CAPABILITY PANEL DESIGNS

3.1 Design Library

The PCQR\(^2\) process capability panel designs are provided under license to IPC by CAT for use by its members and the printed board community. The designs are to be used exclusively for the support of the PCQR\(^2\) database and related activities. The most current process capability panel designs are posted at www.pcbquality.com.

3.2 Panel Layouts

The process capability panels consist of an array of 25.4 x 25.4 mm [1.0 x 1.0 in] test modules, several test coupons within this array, and a 25.4 mm [1.0 in] border that includes nomenclature and alignment features. An individual design layout map is included in each set of design files posted at www.pcbquality.com. The test modules and coupon types include conductor/space, via registration, via formation, via reliability, solder mask registration, controlled impedance, conductive anodic filament and cross-section.

3.3 Test Modules and Coupons

The test modules/coupons are designed to allow evaluation of detailed information on a range of feature types and sizes. Table 3-1 details the information that is obtained from each of the modules/coupons.

3.4 Manufacturing Requirements

Each of the designs has an accompanying requirements file that describes its specific features and manufacturing requirements.

\(^1\) Current and revised IPC Test Methods are available on the IPC Web site (www.ipc.org/html/testmethods.htm)
TEST AND ANALYSIS

4.1 Testing and Data Analysis

The panels shall be tested by CAT or by a third-party licensed by CAT and approved by the IPC D-36 Subcommittee. All data analysis, report generation, and posting to the database shall be performed by CAT. The type of measurement performed on each module is detailed in Table 4-1.

<table>
<thead>
<tr>
<th>Module/Coupon</th>
<th>Capability</th>
<th>Quality</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor/Space</td>
<td>Conductor and space yield</td>
<td>Conductor width and height control</td>
<td>–</td>
</tr>
<tr>
<td>Via Registration</td>
<td>Probability of breakout</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Via Formation</td>
<td>Via yield</td>
<td>Resistance control</td>
<td>–</td>
</tr>
<tr>
<td>Via Reliability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solder Mask Registration</td>
<td>Probability of encroachment</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Controlled Impedance</td>
<td>Impedance control</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Conductive Anodic Filament</td>
<td>–</td>
<td></td>
<td>Time to failure</td>
</tr>
</tbody>
</table>

Table 4-1 Measurements

<table>
<thead>
<tr>
<th>Module/Coupon</th>
<th>Measurement Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor/Space</td>
<td>Precision resistance</td>
</tr>
<tr>
<td>Via Registration</td>
<td>Resistance</td>
</tr>
<tr>
<td>Via Formation</td>
<td>Precision resistance</td>
</tr>
<tr>
<td>Via Reliability</td>
<td>Precision resistance</td>
</tr>
<tr>
<td>Solder Mask Registration</td>
<td>Resistance</td>
</tr>
<tr>
<td>Controlled Impedance</td>
<td>Time Domain Reflectometry (TDR)</td>
</tr>
<tr>
<td>Conductive Anodic Filament</td>
<td>Voltage</td>
</tr>
</tbody>
</table>

4.2 Via Reliability and Conductive Anodic Filament Testing

4.2.1 Assembly Simulation

After initial capability and quality testing, representative reliability and conductive anodic filament coupons shall be subjected to six cycles of a convection solder reflow profile. The conditioning and reflow profiles shall be in accordance with IPC-TM-650, Method 2.6.27. The reflow profile used will be AABUS.

4.2.2 Via Reliability Testing

The via reliability coupons that are subjected to the assembly simulation process shall be thermal-cycled using the Highly Accelerated Thermal Shock (HATS) reliability test methodology, which was developed for the IPC-PCQR² program. The temperature extremes and the number of cycles are detailed in Table 4-2.

Table 4-2 HATS Cycle

<table>
<thead>
<tr>
<th>Lower Temperature</th>
<th>Upper Temperature</th>
<th>Number of Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40 °C</td>
<td>+145 °C</td>
<td>500 or until open</td>
</tr>
</tbody>
</table>

4.2.3 Conductive Anodic Filament Testing

The conductive anodic filament coupons that are subjected to the assembly simulation process shall be subjected to temperature, humidity and bias conditions as detailed in Table 4-3.

Table 4-3 Conductive Anodic Filament Test Conditions

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Humidity</th>
<th>Bias</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 °C</td>
<td>85% RH</td>
<td>48 volts</td>
<td>500 hours or until failure</td>
</tr>
</tbody>
</table>
5 DATABASE

5.1 Data The data collected from each submission is compiled into the database that details the process capability, quality, and reliability demonstrated by fabricators. The data shall remain active for a period of thirty-six months from the posting date after which time it will be removed and archived.

5.2 Database Access Access to the database is provided only through an annual subscription from IPC, and is based on the subscribers’ annual electronics revenues. Subscribers are allowed access to all database reports, summary information and fabricator identities during the term of their subscription.

6 UPDATES AND REVISIONS

The design library and database will be reviewed and updated periodically by the IPC D-36 Subcommittee. Additions, deletions, and modifications will be made to the design library and database to reflect the needs of subscribers and fabricators. These revisions must be approved by the active subscribers. In all cases, the most current revisions shall be used and are the controlling documents. Requests to support archived designs more than three months old shall not be accepted.
The purpose of this form is to keep current with terms routinely used in the industry and their definitions. Individuals or companies are invited to comment. Please complete this form and return to:

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, IL 60015-1249
Fax: 847 615.7105

This is a **NEW** term and definition being submitted.
This is an **ADDITION** to an existing term and definition(s).
This is a **CHANGE** to an existing definition.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If space not adequate, use reverse side or attach additional sheet(s).

Artwork: ❑ Not Applicable ❑ Required ❑ To be supplied ❑ Included: Electronic File Name:

Document(s) to which this term applies:

Committees affected by this term:

Office Use

<table>
<thead>
<tr>
<th>IPC Office</th>
<th>Committee 2-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Received:</td>
<td>Date of Initial Review:</td>
</tr>
<tr>
<td>Comments Collated:</td>
<td>Comment Resolution:</td>
</tr>
<tr>
<td>Returned for Action:</td>
<td>Committee Action: ❑ Accepted ❑ Rejected ❑ Accept Modify</td>
</tr>
<tr>
<td>Revision Inclusion:</td>
<td></td>
</tr>
</tbody>
</table>

IEC Classification

Terms and Definition Committee Final Approval Authorization:
Committee 2-30 has approved the above term for release in the next revision.

Name: Committee: IPC 2-30 Date:

SUBMITTOR INFORMATION:

Name:
Company:
City:
State/Zip:
Telephone:
Date:

A trusted leader for more than 50 years, IPC is the premier source for industry standards, training, market research and public policy advocacy — supporting the needs of the estimated $1.7 trillion global electronics industry.

For less than $3.00 a day, IPC members enjoy unlimited access to the tools, information and forums needed to thrive in an ever-changing electronic interconnect industry.

"I have a responsibility to my customers and my shareholders. Between the savings on standards, training materials, APEX and industry data, IPC membership provides immediate 100% return on investment for us. It would be irresponsible not to be a member."

Joseph F. O’Neil
President
Hunter Technology Corp

"Being a part of the fast-changing global electronics marketplace requires constant intelligence about market trends, standards and solutions to the challenges throughout the supply chain. IPC is an invaluable partner in providing that intelligence through conferences, white papers and technical standards."

Andy Hyatt
Executive Vice President
Business Development
Creation Technologies

"Graphic PLC has enjoyed the privilege of being an IPC member for more than 30 years and the technical benefits derived to focus us as a world player in the manufacture of PCBs have superceded the cost of membership many times."

Rex Rozario, OBE
Chairman
Graphic Plc.,UK

"Put IPC MEMBERSHIP to WORK for your COMPANY"

Keep on top of industry developments ... and how they will affect your company

- Enjoy 24/7 privileges to FREE members-only online resources, including a searchable archive of original articles and presentations on the latest technical issues and industry/market trends.
- Receive FREE exclusive statistical reports available for the EMS, PCB, laminate, process consumables, solder and assembly equipment industries.
- IPC events, including IPC APEX EXPO™, technical conferences, workshops, training and certification programs and executive management summits provide unparalleled educational and networking opportunities.
- Stay abreast of global environmental directives, legislation and regulations, and how these specifically impact each segment of our industry’s supply chain.

Save enough money to easily pay for your membership

- Get discounts of up to 50 percent on IPC standards, publications and training materials.
- Save money on online subscription licenses of IPC standards through the world’s largest standards reseller — IHS.
- Enjoy dramatic discounts on registration fees for meetings, technical conferences, workshops and tutorials.
- Benefit from preferred pricing on exhibit space at IPC trade shows and events.

"I have a responsibility to my customers and my shareholders. Between the savings on standards, training materials, APEX and industry data, IPC membership provides immediate 100% return on investment for us. It would be irresponsible not to be a member."

Joseph F. O’Neil
President
Hunter Technology Corp
Increase your knowledge and train your people

- IPC workshops and international conferences provide an exchange of technical information that is unequalled.
- IPC's training and certification programs offer a cost-effective, industry-recognized way to demonstrate your commitment to quality.
- Facilitate your staff's continuous learning through IPC's award-winning CD and DVD-based training materials.

Expand your network and build your visibility

- Network with your peers through IPC committees, PCB/EMS management councils and IPC events.
- Participate in problem-solving exchanges through IPC's technical e-forums.
- Get answers to your technical questions from IPC's technical staff.

Help shape the industry

- Participate in developing or updating the global industry standards that your company, customers, competitors and suppliers use.
- Take an active role in IPC-organized environmental and public policy activities to advocate for regulations and legislation favorable to your company and the global electronics community.

Market your business

- Use the IPC member logo to highlight your company's leadership in the industry.
- Build your brand visibility through IPC's Products and Services Index (PCB and EMS companies only), and IPC's annual trade shows and conferences, including IPC APEX EXPO.
- Gain valuable exposure by sponsoring market research conferences and executive management meetings.

“IPC's role in defining industry technical standards, addressing industry concerns, and promoting knowledge sharing through conferences and training, significantly benefits member companies and the industry as a whole, especially in today's global outsourcing environment.”
Dongkai Shangguan, Ph.D.
Vice President
Flextronics International

“Juki gets tremendous value from our IPC membership... we get quarterly market data which would cost us thousands of dollars if we commissioned it on our own. The industry standards generated by IPC committees allow us to design our equipment with certainty that it will meet industry requirements. The returns for our company are so great, they are beyond calculable.”
Bob Black
President and CEO
Juki Automation Systems Inc.

Put the resources of the entire industry behind your company by joining IPC today!

To learn more about IPC membership or to apply online, visit www.ipc.org.

IPC — Association Connecting Electronics Industries® Headquarters
3000 Lakeside Drive, Suite 309 S, Bannockburn, IL 60015
www.ipc.org
+1 847-615-7100 tel
+1 847-615-7105 fax
Visit www.IPC.org/offices for the locations of IPC offices worldwide.
Thank you for your decision to join IPC. Membership is **site specific**, which means that IPC member benefits are available to all individuals employed at the site designated on this application.

To best serve your specific needs, please indicate the most appropriate member category for your facility. *(Check one box only.)*

- **Printed Circuit Board Manufacturer**

 Facility manufactures and sells printed circuit boards (PCBs) or other electronic interconnection products to other companies. What products do you make for sale? (check all that apply)

 - [] One and two-sided rigid, multilayer printed boards
 - [] Flexible printed boards
 - [] Other interconnections
 - [] Printed electronics

- **Electronics Manufacturing Services (EMS) Company**

 Facility manufactures printed circuit assemblies, on a contract basis, and may offer other electronic interconnection products for sale.

- **OEM — Original Equipment Manufacturer**

 Facility purchases, uses and/or manufactures printed circuit boards or other interconnection products for use in a final product, which we manufacture and sell.

 What is your company’s primary product line?

- **Industry Supplier**

 Facility supplies raw materials, equipment or services used in the manufacture or assembly of electronic products.

 Which industry segment(s) do you supply?

 - [] PCB
 - [] EMS
 - [] Both
 - [] Printed electronics

 What products do you supply?

- **Government, Academia, Nonprofit**

 Organization is a government agency, university, college or technical or nonprofit institution which is directly concerned with design, research and utilization of electronic interconnection devices.

- **Consulting Firm**

 What services does the firm provide?
Application for Site Membership

Site Information

Company Name

Street Address

City State Zip/Postal Code Country

Main Switchboard Phone No. Main Fax

Company E-mail address Website URL

Name of Primary Contact

Title Mail Stop

Phone Fax E-mail

Payment Information (Purchase orders not accepted as a form of payment)

Membership Dues

Membership will begin the day the application and dues payment are received, and will continue for one or two years based on the choice indicated below. All fees are quoted in U.S. dollars.

Please check one:

<table>
<thead>
<tr>
<th>Primary facility:</th>
<th>Government agency, academic institution, nonprofit organization</th>
<th>Consulting firm (employing less than 6 individuals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ One year $1,050.00</td>
<td>☐ One year $275.00</td>
<td>☐ One year $625.00</td>
</tr>
<tr>
<td>☐ Two years $1,890.00</td>
<td>☐ Two years $495.00</td>
<td>☐ Two years $1,125.00</td>
</tr>
<tr>
<td>(SAVE 10%)</td>
<td>(SAVE 10%)</td>
<td>(SAVE 10%)</td>
</tr>
</tbody>
</table>

Additional facility: Membership for a facility of an organization that already has a different location with a primary facility membership

☐ One year $850.00	☐ One year $625.00
☐ Two years $1,530.00	☐ Two years $1,125.00
(SAVE 10%)	(SAVE 10%)

Company with an annual revenue of less than $5,000,000

☐ One year $625.00	☐ One year $625.00
☐ Two years $1,125.00	☐ Two years $1,125.00
(SAVE 10%)	(SAVE 10%)

Enclosed is a check for $________________

Bill credit card: (check one)

☐ MasterCard ☐ American Express ☐ Visa ☐ Diners Club

Card No. Expiration Date Security Code

Authorized Signature

Mail application with check or money order to:

IPC
3491 Eagle Way
Chicago, IL 60678-1349

Fax/Mail application with credit card payment to:

3000 Lakeside Drive, Suite 309 S
Bannockburn, IL 60015
Tel: +1 847-615-7100
Fax: +1 847-615-7105
www.ipc.org

*Overnight deliveries to this address only.
Contact membership@ipc.org for wire transfer details

Please attach business card of primary contact here

10/10
The purpose of this form is to provide the Technical Committee of IPC with input from the industry regarding usage of the subject standard. Individuals or companies are invited to submit comments to IPC. All comments will be collected and dispersed to the appropriate committee(s).

If you can provide input, please complete this form and return to:
IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, IL 60015-1249
Fax: 847 615.7105
E-mail: answers@ipc.org
www.ipc.org/standards-comment

1. I recommend changes to the following:
 ___ Requirement, paragraph number ________
 ___ Test Method number ________, paragraph number ________

 The referenced paragraph number has proven to be:
 ___ Unclear ___ Too Rigid ___ In Error
 ___ Other

2. Recommendations for correction:

 __
 __
 __
 __
 __

3. Other suggestions for document improvement:

 __
 __
 __
 __
 __

Submitted by:

Name __________________________________ Telephone ______________________

Company __________________________________ E-mail ______________________

Address __________________________________

City/State/Zip __________________________ Date __________________________